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ABSTRACT 

This paper investigates a novel approach to recognize 

thin features. The latter are primary for planning the 

manufacturing setup in aircraft industries. 

Traditional techniques survey geometrical variations 

to detect their presence. Through this article, we will 

present a new detection technique using a 

combination between heat diffusion and persistence 

homology. This will serve to recognize typical heat 

diffusion protrusions and to classify them accordingly. 
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1. INTRODUCTION 

Mechanical parts, in aircraft industries, join the most 

contradicting design requirements: high strength and 

low weight. This generates the abundant presence of a 

particular mechanical feature: Thin Features. In the 

following introduction, we first present thin features, 

then, we detail the upcoming sections in this article.  

1.1. Thin Features 

Thin features refer to traditional protrusion and pocket 

features with a particular attribute: thickness to height 

ratio is relatively low forcing a particular 

manufacturing setup. 
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Figure 1. Thin Features 

Figure 1 presents a typical aircraft part, used in [1]. 

Thin features can be classified into two distinct types: 

Thin walls and Thin Bottoms. The manufacturing 

fixtures, refer to Figure 2, heavily influence the 

typology of a feature. As this article does not handle 

the automated selection of a manufacturing fixture, we 

attempt to classify thin features at large. The 

importance of properly identifying which sub feature 

type finds its roots in setting up an appropriate 
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manufacturing program. Thin walls are manufacturing 

through the alternation of the manufacturing side 

along the same direction as shown in Figure 3. Thin 

bottoms might require strengthening the base to avoid 

deflection. 

 
Figure 2. Fixtures and their effect on the sub type 

 

 
Figure 3. Peculiar manufacturing of a thin feature 

1.2. Structure 

The following sections of the article will first 

introduce a state of the art. The latter is split into two 

components: one relevant to traditional works 

investigating the identification of thin features, the 

second related to the more recent techniques using 

persistence homology and heat diffusion. Then, 

section three, presents a previous methodology, 

relying on geometrical computations, used to identify 

thin features. Section four presents the novel 

technique reaping the benefits of persistence 

homology and feature identification. The article ends 

up with a conclusion and perspective for future works. 

2. STATE OF THE ART 

Related works deal with setting up proper milling 

conditions of thin walls. Typically, they investigate 

stability analysis during the milling process by the 

cutting forces using FEM (Finite Element Model) 

method for machining simulation.  

As an example, [2] propose a methodology to 

determine the stability or the instability of thin walls 

during manufacturing.  The approach covers all stages 

of the thin wall milling and is based on the cutting 

forces analysis. More recently, [3] present a 

mathematical model of FEM for corners milling 

detection of thin walled cavities on aeronautical 

components. [4] propose an overview of a FEM 

method based milling process plan verification model 

and associated tools. Their method allows a machining 

simulation for analysing part errors, induced during 

milling of thin-walled components.  

The industrial challenge is to reduce both cost and 

manufacturing time. For this, we consider that the thin 

wall detection should be identified at the design stage 

rather than the process planning one.  

2.1. Thin wall manufacturing and 
identification 

A large overview of related works based on thin wall 

detection at the design stage is proposed below. 

For the aeronautic context, the project HITHRU III [5] 

deals with process planner assistance. The problem of 

thin wall detection is highlighted but the CIMSKILL 

software does not to detect it.  

The project MADEsmart [6] is dedicated to the 

multidisciplinary optimization and integration of 

manufacturing constraints in design stage for spare 

aeronautic parts. Three main technologies to improve 

the design of aircraft parts are used : (1) the multi 

agent system to coordinate the resources between 

teams of development; (2)  MDO (Multidisciplinary 

design optimization) to solve design problems 

incorporating a number of disciplines; (3) the LCS 

(Lexical Conceptual Structure) in order to introduce a 

semantically representation of constraints in design 

stage. The manufacturability analysis is as well 

ensured by CIMSKILL. The latter includes a database 

of standards on milling aluminum and titanium parts. 

A database of 5-axis milling features and a library of 

cutting tools had been added. This system is able to 

detect 80% of features of the parts but does not detect 

complex or specific features, such as thin walls. 
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Figure 4. USIQUICK by [7] 
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The French National Project USIQUICK [7], which 

ended in 2006, had to provide a software for 

manufacturing parts in the aeronautical domain. The 

creating of automatic process plan, selection of the 

cutting tools, optimization of the fixtures as well as the 

automatic tool path generation with documentation are 

functionalities of USIQUICK. The input of the system 

is a CAD part and the outputs are support functions 

and documentation for the process planner. The 

system is split in three main modules such as the 

“Transformation”, the “Preparation” and 

“Generation”. The “Transformation” is used to adapt 

the geometry of the CAD model for the preparation 

model. The “Preparation” is used to obtain a Macro 

process consisted of fixtures and tools. The 

“Generation” calculates the tool paths and provides a 

milling simulation. The CNC G-code is next generated 

with documentation on milling strategies.  The 

manufacturing analysis is mainly ensured by the 

“transformation” module. The thin wall detection is 

one of the functionalities suggested by the system.  

For other domains, Zhao [8], in their work on 

manufacturing analysis of sheet metal and injecting 

parts, relate the problem of thin wall detection. The 

authors specify that such peculiar features do not exist 

in typical databases. 

[9] developed an approach to evaluate the 

manufacturing analysis of foundry parts in order to 

ensure the parts are compatible with a manufacturing 

process. Their work propose an algorithm based on 

three concepts : (1) the orientation of parts and tools ; 

(2) the determination of edges, thin wall, ribs ; (3) the 

addition of chamfers, filets, circular edges,  and draft 

surfaces to adapt the part  with a manufacturing 

process. The evaluation is made by features’ 

extraction such as plan surfaces and concave areas. 

Thus, their work allows detecting simple thin wall on 

prismatic parts milled in 3-axis machine. 

To summarize, scientific literature contains several 

works associated with thin wall detections in 

CAD/CAPP/CAM systems, where the activity of 

process planer is often situated between CAD and 

CAM environments. This activity demands complex 

brainstorming. The time needed to establish a correct 

process plan range between 5 to 20 days for complex 

parts. Since aeronautical industries do not mass 

produce, we assume that the brainstorming time has to 

be reduced. The thin wall detection will allow 

reducing the process planning time. 

2.2. Persistence heat signature 

Shape recognition performed through heat is achieved 

by solving the heat equation over the geometry.  [10] 

shows that the solution of the heat equation called the 

heat kernel is related to the eigenvalues and 

eigenfunctions of the Laplacian. The use of the 

Laplace operator along with the heat kernel is used to 

discover geometrical information about the manifolds. 

The link between the analysis of the geometry and the 

geometry itself is the eigenvalues of the Laplace 

operator. [11] develops an algorithm that 

approximates the Laplace operator on a meshed 

surface with point-wise convergence. The algorithm 

was empirically proved to exhibit convergence and 

outperforms other methods in accuracy and robustness 

with respect to noise data. [12] shows that the synergy 

between HKS and persistent homology leads to an 

efficient pose-oblivious matching algorithm that can 

be used for all models, whether partial, incomplete, or 

complete. The matching of partial and incomplete 

models cannot rely on global features. However any 

matching relying on only local features becomes 

susceptible to noise caused by small perturbations. 

Using small time scales to match local features 

increases the local variation in the HKS function 

values making it more sensitive to noise. To overcome 

this problem, persistent homology was introduced. 

Candidates for feature points are considered to be the 

maxima of the HKS which persist beyond a given 

threshold. Instead of detecting the persistence of all 

critical values, the implemented algorithm eliminates 

maxima that are not persistent. Experimental results 

show that this method is effective in shape matching. 

The heat kernel may be used to perform other 

geometrical applications other than shape recognition. 

One of these applications is 3D mesh 

segmentation. [13] states that isometrically-variant 

segmentation of the surface, sensitivity to topological 

perturbations of the surface, sensitivity to numerical 

noise and inconsistency with human understanding of 

segmentation are problems that a segmentation 

approach confronts. A novel approach is introduced 

dealing with perceptually consistent mesh 

segmentation (PCMS) by exploring heat kernel 

featured space to which the geometric features of 

mesh are mapped. PCMS provides a solution for the 

problems of segmentation. Shape signature is a 

concise representation of the shape that captures some 

of its essence. It could be used in various applications 

such as 3D shape similarity. 

Since many shapes manifest rich variability, shape 

retrieval is often required to be invariant to different 
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classes of transformations and shape variations such 

as scale variance, orientations, missing data, and 

appearance in different formats and 

representations [14].  

 
Figure 5. HKS and feature recognition 

The Heat Kernel Signature is a widely used signature. 

The use of HKS at different time values allows the 

description of features at multiple scales. The synergy 

between HKS and persistent homology leads to an 

efficient pose-oblivious matching algorithm that can 

be used for all models, whether partial, incomplete, or 

complete. 

3. USIQUICK’S METHODOLOGY FOR 
THIN WALL DETECTION 

 

This section shows the USIQUICK method based on 

feature extraction from a CAD model. To start, we 

explain the process plan rules modeling, next the 

algorithms and detections results.  

3.1. Modeling of process planner rules 
to analyze thin walls 

 

In the aeronautical domain, the process planner 

defines the main fixture plan of the part. Then, he 

measures the length from some preselected points on 

a presumed thin wall. Next, the height h and thickness

R  are measured. The assumed wall is considered a 

Thin Wall if at least one measure point respects the 

following condition. 





R

h

 (1) 

The ratio   depends of the material but for this paper, 

  is considered between 5 and 8. This framework 

comes from the expertise of aeronautical process 

planners. 

3.2. Usiquick’s algorithm 

The suggested algorithm below is to detect the CAD 

faces of a thin wall. The process is mainly based on 

the comparison between real thicknesses of the model 

and the thickness calculated from the expert rule (1).  

A face of the model is considered as well as 

neighbouring surfaces. Only faces milled according to 

flank or end modes with adjacent thin faces will be 

eligible. Thus, eligibility is based on two main steps: 

(1) the study of surfaces with thin boundary edges; (2) 

the study of the thickness. 

The eligibility surfaces are often semi-opened 

containing several open edges. 

From the analysis of some aeronautical parts, it 

appears that the surfaces where the sum of lengths of 

opened edges lgO is over 75% perimeter P are 

analyzed: 

PO  75.0lg (2) 

Rule (2) allows to eliminate fillets of the part and the 

flank surfaces of the thin wall and to detect the thin 

top of the walls.  

Following, we determine the thickness of the wall. For 

this, we consider that the geometrical shape is called 

“thick” when its length is more than its width. The 

easier criterion is to compare the length with the 

width. However, with complex surfaces, this criterion 

is not measurable (see Figure 6). 
Figure 6. Assimilation of complex surfaces to 

rectangular ones 
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To overcome this issue, we assimilated complex 

surfaces and made it possible to estimate the ratio 

between the length (L) and Width (w) according to the 

surfaces (S) and the perimeter (P). 
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This ratio (6) allows characterizing the thickness of a 

surface. A high value confirms that a surface is not a 

square shape.  

Following several computation, we were able to 

deduct the below condition (7) to consider a feature as 

a thin feature. 

 
The limit and condition expressed above are deducted 

from a test led on 8 aeronautical parts.  

 
Figure 7. Equation deduction following manual 

classification of thin features. 

4. PERSISTENT HEAT SIGNATURE 

This section presents the adopted methodology to 

recognize thin features. The proposed solution joins 

two algorithms that are briefly prescribed below: 

- Algorithm 1: Using persistence homology to 

recognize potential protrusion features. This 

work is shallowly detailed in this publication.  

- Algorithm 2: Generating a thinness 

probability to identify most probable thin 

features. This builds on the previous results in 

algorithm 1. 

Following the presentation of both algorithms, we 

forward a section showing current results. 

4.1. Recognition of protrusions 

The following paragraph describes the approach 

adopted to recognize protrusions and pocketed 

features. It follows the digital detection logic of RIMA 

(RecognItion and feature MAtching). RIMA is an 

application developed in Matlab ®. 

Input can be an ‘.off’ file or a CATIA ® mesh 

resulting ‘.dat’ file. Ideally, the software can be 

connected to other attempts at treating cloud of points 

obtained from a 3D scanning device and have its noise 

filtered and triangulation performed. Error! 

Reference source not found. shows the two 

traditional input methods leading to delivering a 

triangulated mesh. The latter is the input of RIMA. 

Different mesh sizes were tried (10mm, 5mm, 

1mm…) as well as non uniform and uniform meshing. 

Refining our mesh would certainly lead to more 

accurate results however in the expense of 

computation time. 2mm uniform mesh gave good 

results while being not expensive. 

Stage 1: Heat Kernel Signature 

Throughout this stage, we attempt to estimate the heat 

losses a source endures through time. The rate, at 

which a source diffuses heat, is deemed an indicator 

on the localization of a point with respect to its 

surroundings. In order to do so, we attempt to solve 

the partial differential diffusion equation used on a 

compact Riemannian manifold. Figure 8 shows heat 

diffusion on a part after application of a unit heat at 

the tip of the sphere applied within RIMA at different 

time intervals.  
𝛿𝑈

𝛿𝑡
− 𝜅∇2𝑈 = 0 

Equation 1. Partial differential diffusion equation 
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Figure 8. Heat diffusion when a source heat is 

applied at t=0.061, t=0.111, t=0.201 

A known solution for Equation 1 is the heat kernel. 

The heat kernel represents the quantity of heat 

received by a point after a unit of heat is applied at a 

certain reference point at time t=0. The amount of heat 

is computed for discrete cases using Equation 2. 

Parameters λ and φ are the eigenvalues and 

eigenvectors solution to the Laplacian Matrix. The 

first 300 values are considered.  

 

Ht(x, y) = ∑ e−λitϕi(x)ϕi(y)

300

i=1

 

Equation 2. Heat Kernel 
 

We use a modified Laplacian in the application of the 

heat kernel. While regularly matrices tend to include 

an indicator to the manifold curvature – the cotangent 

–, we add a mesh uniformity factor to overcome mesh 

proportionality and skewness. This weight applied to 

the traditional cotangent value is exhibited by the 

Voronoi area. Equation 3 presents our modification of 

the Laplacian. Figure 9 presents the geometric 

elements needed for the equation. 

 

Lij =
1

Si
(

cot αij + cot βij

2
) 

Equation 3. Normalized cotangent 
 

 
Figure 9. Geometric elements to compute the 

modified normalized Laplacian 
 

RIMA gives the ability to specify the time frame and 

the desired computation steps. Standard values are 

from t=0.001 to t=1, using a 0.001 step (𝜏). At each 

instance 𝑡, heat retained at the source 𝐻 is computed 

and saved in a HKS record matrix. Each point of the 

starting block is treated separately and used to 

complete the HKS record. This step is the most 

expensive computationally. The computation time can 

be further refined through usage of model reduction 

techniques.  

At the end of this stage we would have for each point 

the amount of heat retained as time elapses.  

Stage 2: Computing the local heat persistence 

level and value 

This second stage will measure the persistence Р of a 

point to retain heat and to resistant losing its heat. Heat 

persistence is defined an interval where the heat value 

on a node persists above a minimum threshold. 

Persistence could be calculated by level or by value. 

We will thus apply persistence homology to extract 

significant subsets of the global mesh at different time 

intervals.  

 

α

β

j

i
Si
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Figure 10. Heat retention at a sample points (a) 

Graph showing a typical point (b) Graph showing 

a point with resistance areas (typically top of a 

pocket) 

Persistence Level 

Persistence levels are measured by instances of time 

where heat at a certain point is still higher than a preset 

value µ. At the start heat is rapidly lost to a certain 

starting value λ. Following, heat persists through a 

certain time frame (shown in red onFigure 10). 

Persistence levels are computed using Equation 4. 

Ρ =
𝑡𝑖

𝜏
;  Where 𝑡𝑖 is the time when heat drops below µ 

and is the RIMA computation step 𝜏 

Equation 4. Persistence Level 

 
Figure 11. Persistence level shown in red 

Persistence Value 

Persistence values are measured by the incremental 

value of heat, until the time where heat drops lower 

than a preset value µ. It can be computed as the 

integral of the heat function or the area below the heat 

curve. Persistence value might sometimes better 

indicate persistence and refine the selection of tip 

points. Persistence values are computed using 

Equation 5. 

 

Ρ = ∑ ℎ𝑖
ℎ𝑖<𝜇
1 ;  Where ℎ𝑖 is the instantaneous value of 

heat.  

Equation 5. Persistence Level 

 
Figure 12. Persistence value (Area) shown in red 

Stage 3: Persistence Clustering 

The third stage will cluster points of similar 

persistence. The cloud of points is divided into subsets 

that group adjacent nodes having similar persistence 

values. Adjacency is determined from a connectivity 

matrix, which is a square matrix containing all nodes 

with a 1 when nodes are connected and 0 otherwise. 

Similarity in persistence applies when 2 nodes exhibit 

a heat value within a defined similarity percentage. 

The clustering is to predict a mass behavior and to 

analyze the potential output. Typically elongated 

features will have ‘rings’. The expected result would 

follow a typical heat analysis. To demonstrate, we 

illustrate the principle in Figure 13. The algorithm 

initiates clustering from the point persisting the most 

to dissipate heat. All points connected with persistence 

value higher than the matching limit, would be 

clustered together. When low similarity percentage is 

computed, features would be completely detected with 

surrounding elements and noise components. The 

result shown in step (a) would not be representative of 

any real feature. As the similarity percentage is 

increased, elongated rings (b) (c) and (d) becomes 

more distinctive. It is worthwhile to note that the tip 

of the feature might converge into one heated cluster 

t=0 ti

H

t=0 ti

H

λ

µ

t=0 ti

λ

µ

t=0 ti
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or get further separated depending on the feature 

profile. This will be further detailed in stage 4.  

 
Figure 13. As persistence similarity increases, 

clustering is refined (a) low similarity (b) medium 

similarity (c) medium-high similarity (d) high 

similarity 
 

Figure 14 shows an example of applying this 

persistence clustering stage. Section (a) represents the 

neutral cloud of point of our test part. Section (b) 

represents the clustering when a 80% similarity factor 

is applied. We can clearly note that the ‘tip’ of features 

is identified. The overall most resistant areas 

constitute the tips of the parts.  
 

 
(a) Neutral 

 
(b) 80% Similarity 

 

Figure 14. Sample persistence clustering 

Stage 4: Multiscale Filtering 

This stage is the most important in the recognition 

step. We survey potential features through a 

multiscale filtering technique. The latter is used to 

separate clusters that form the features from other 

clusters. We use a methodology of separating cold 

bodies from warm bodies based on network graphs. 

The concept is to recognize and split feature islands. 

The latter is defined as the potential feature including 

the starting heated zone. 

 
Figure 15. Identifying clusters and evaluating 

their average heat persistence  

 

 
Figure 16. Splitting scheme for interconnected 

clusters 
 

The multiscale filtering identifies at first the coldest 

weighted body. Figure 16 illustrates the concept. The 

concept is to find split islands by discarding 
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interconnected subsets with more than 2 unidirectional 

flows. The scheme shows at first, that the coldest 

weighted body is identified, and following, it is 

discarded and all its connections are canceled. The 

new starting points are identified as the previous 

connections. Remaining new starting points are 

disabled (green) if they do not hold more than one 

directional flow. The algorithm continues until the last 

instance is validated. The output would also include 

meaningless clusters identified at a typically low 

similarity level (Figure 17). 

 
Figure 17. Sample result at 70% similarity 
 

At this stage, the algorithm issues a merge request: It 

propagates the pre-identified tips and runs similarity 

and inclusivity tests for similar subsets at 

incremented persistence similarity subsets. The 

algorithm dynamically searches for the optimal 

clusters enclosing most pre identified sets.  

 

 
Figure 18. Final result of stage 4 following the 

application of the multiscale filtering. 

Stage 5: Feature Recognition 

The direction of a feature is determined by obtaining 

the line that best fits the points present in the cluster 

of clusters. The Singular Value Decomposition 

method was used to fit the points. The cross-section of 

a feature is determined by projecting the nodes of the 

cluster on a plane normal to the direction vector. After 

obtaining the clusters, the center of gravity of each 

cluster is computed. It was noticed that a similarity of 

85% retains all necessary clusters after filtering. A 

lower percentage lead to missing clusters and a higher 

percentage lead to additional not needed clusters. 

 
Figure 19. (a) cluster center of gravities (b) 

Recognized Features and attributes 

 

4.2. Thinness probability 

At this stage, we have the potential protrusion features 

already identified. Few stability errors of RIMA are 

still reported and are under investigation. This stage is 

an add-on that computes the thinness probability for 

identified features in a part, and classifies them. 

The algorithm is composed of three stages: Point 

thinness, mean feature thinness, normalized thinness 

probability.  
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At the end of stage 1, we would have a group of 

identified features with the set of points belonging to 

them as well as the feature height. Following we 

would compute the point thinness defined by: 

𝑝𝑡 = 𝐻𝑖𝑔ℎ𝑒𝑠𝑡(
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
) 

The shortest connected distance stands for the shortest 

path on the parts surface that connects two points. The 

shortest distance is the direct distance computation 

through the matter.  

Once thinness is identified for every point, we 

compute the overall feature mean thinness which 

represents the average thinness value of the set of 

points defining the feature. 

𝑚𝑡 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑝𝑡) 

Following, we calculate a normalisation value for 

every feature that is identified by:  

𝑛 =
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
 

The shortest feature height corresponds to the minimal 

value of feature height of the part. 

Finally, the thinness value corresponds to: 

𝑡ℎ𝑖𝑛𝑛𝑒𝑠𝑠 = 𝑛 . 𝑚𝑡 

4.3. Current results 

The following images present 4 case studies carefully 

selected to illustrate variable concepts such as 

different cross sections and different heights. The 

image shows as well the thinness values. The highest 

the value of thinness, the most likely a feature would 

be a thin feature. 

 

 
Figure 20. This part includes two protrusion features 

having different cross sections at the same height, the 

thinness probability clearly separated between them 

 
Figure 21. This part includes five protrusion features 

having similar cross sections at different height, the 

thinness probability clearly separated between them 
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Figure 22. This airfoil was split into two thin zones, 

clearly showing the particular areas 

 
Figure 23. This part showed that the algorithm would 

generate the same thinness probability for reverse 

features. Note a minor feature recognition error at the 

tip of feature 2 

5. CONCLUSION AND PERSPECTIVES 

This paper presented a novel approach to detect thin 

features. The approach relies on combining 

persistence clustering and determining a thinness 

value. The current algorithm reorders all the identified 

features in a part from the most probable thin feature 

to the least probable. This would be presented to the 

process planner at the end of the design stage to 

confirm the selection and initiate particular 

manufacturing setup or to discard the selection. 

The algorithm is still at its start, however it showed 

extreme stability when it comes to cross section 

variation as well as height variation. Following steps 

would include further refinement at the first step of 

feature recognition as well as treatment of parts with 

several complex features. 
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