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Optimal variable stiffness distribution for a composite

plate with a row of holes subjected to tension/shear

load cases

Michel.J.L. van Tooren∗

University of South Carolina, Columbia, SC, 29201

Ali Elham†

Delft University of Technology, 2629HS Delft, The Netherlands

Ramy Harik‡ and Ahsan Uddin§

University of South Carolina, Columbia, SC, 29201

This paper presents a framework for the design of variable stiffness fiber composite
panels subject to multiple load cases, each case a combination of tension and shear. The
framework consists of a finite element (FE) solver, an optimizer, a module that controls
the link between design variables and the stiffness matrix in the FE module, and a post-
processor that translates the theoretical optimal result from the optimizer into discrete
tow paths for each ply. The dual mesh formulation of the design variables using a man-
ufacturing mesh separate from the FE mesh limits the number of design variables while
preserving smoothness and allows easy specification of manufacturing constraints enforced
by the envisioned fiber steering process, for example the minimum course radius to pre-
vent tow buckling. It also allows the incorporation of constraints related to fusion bonding
techniques for continuous carbon fiber reinforced thermoplastic composites based on in-
duction heating which require the generation of eddy currents and therefore constrain the
fiber orientations and stacking sequence. The framework is intended for inclusion in an
MDO based aircraft wing weight estimation tool in which it is combined with aerody-
namic analysis and optimization. Results obtained with the framework show the structural
benefit of using variable stiffness also in case of multiple loadcases. The design variable
formulation leads to acceptable calculation time while preserving accuracy and smoothness
of the solution. Separation of optimizer and tow path planner allows multiple practical
interpretations of the theoretical optimization result. This preserves the influence of the
manufacturing engineer on the practical panel lay-up.

I. Introduction

The next level of performance of composite structures is likely to come from three major changes. First,
the development of variable stiffness design and manufacturing principles. These will allow simultaneous

design of load distribution and strength distribution. Although far from mature, there is significant evidence
that variable stiffness structures will show unprecedented specific strength levels.1,2, 3, 4, 5, 6 Figure 1 shows
the world’s first test on a computationally optimized variable stiffness panel with a row of cut-outs. The
failure pattern shown by the panel indicated that variable stiffness enables fully stressed design and therefore
very high structural efficiency. The panel shown failed at a load more than 50% higher than its constant
stiffness equivalent.

∗Professor, USC/McNAIR Center for Aerospace Innovation and Research, vantooren@cec.sc.edu, Senior Member.
†Postdoc Researcher, FPP Aerospace Engineering, A.Elham@tudelft.nl, Member.
‡Assistant Prof., USC/McNAIR Center, harik@mailbox.sc.edu.
§PhD Student, USC/McNAIR Center, uddinma@email.sc.edu.
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Figure 1. Failure of a vari-
able stiffness panel loaded in
tension. Note that failure is
spread over the full panel in-
stead of being concentrated
at the edge of the cut-out.
Courtesy Fokker Aerostruc-
tures BV, Delft University of
Technology, CoDeT Engineer-
ing, NLR.

Second, the development of fusion bonding based assembly of thermoplastic
composites using induction, laser and ultrasonic heating principles. Figure 2
shows a recent and unique welded thermoplastic (constant stiffness) carbon
composite control surface for a business jet.7,8

Third, the development of multi-polymer composite structures. Thermoset
and thermoplastic polymers offer distinct advantages to the mechanical and
manufacturing properties of a polymer composite material. It is advantageous
to have zones of thermoplastic and zones of thermoset composite in a single
structural element.9

To successfully combine these three developments, the scientific and en-
gineering challenge is to design and create materials and structures for opti-
mal performance taking into account requirements such as stiffness, strength,
conductivity, thermal expansion, and the ability to be fusion bonded at
selected zones. This requires a fundamental understanding of the multi-
physical properties of variable stiffness, multi-polymer composite laminates and
shells.

This paper focuses on the modeling and optimization part of fiber steering,
a specialized version of automated fiber placement (AFP), to support the de-
sign of variable stiffness panels with cut-outs. While in normal AFP one tries
to minimize non-geodesical placement of fibers in a part, fiber steering actually
tries to utilize non-geodesical placement of fibers to control the load paths in
the laminate as well as the laminate strength. Load path control is achieved by varying material stiffness
w.r.t. a fixed coordinate system from point to point. The fundamental requirement to have displacement
compatibility in a laminate is used to steer load to certain areas by making them stiffer. At the same time
the strength of the laminate is influenced by the steering since strength of a laminate is directly related to
the fiber directions in its constituing plies. Design for fiber steering therefore aims at the best match between
loads and strength in each point of the laminate.

Figure 2. Induction
welded thermoplastic
composite business jet
rudder.

AFP machines work with slit tapes also called tows. These tows are narrow, thin
tapes of fiber based material. Each tow is typically 1/4 inch width, 0.25mm thick
(including resin) for a typical 250gm/m2 base tape material and contains about
25-30k fibers. An AFP machine can lay-down several tows simultaneously in so-
called courses. The design support tool discussed in this paper can help in defining
courses of different numbers of tows. Tows have a finite width and different tow
deformation mechanisms are required to put a tow flat on a non-planar surface.
These mechanisms are not discussed in this paper, it is assumed that a minimum
radius can be determined for a specific tow that assures adequate quality when the
tow is used for in-plane steering based optimal design.

II. Basic Fiber Steering Design Problem

The design framework addresses the problem of finding the optimal fiber
direction in each point P of each ply of a composite laminate with cut-outs
loaded in plane stress. The plate problem under consideration defines a do-
main, Ω, bounded by multiple edges, Γ , in the x − y reference plane,
see figure 3. The state variables are the displacements in x and y direc-
tion, u and v respectively. The thickness of the plate, h(x, y), is consid-
ered constant and small when compared to the plate dimensions in the x − y
plane.

The basic static equilibrium equations to be solved within the body are:

∂σx
∂x

+
∂τxy
∂y

+ bx = 0
∂τxy
∂x

+
∂σy
∂y

+ by = 0 (1)

2 of 14

American Institute of Aeronautics and Astronautics



And on the boundary by:

σxl + τxym = pxy τxyl + σym = py (2)

!

"

y, v

x, u

pxy py

xp , yp

φ(x,y)P

pxy

py

#xy

$x

$y

%

Figure 3. Basic geometry of the composite plate with
cut-outs.

Here l and m are the directional sin θ and cos θ respec-
tively. The plate is assumed to be a laminate consisting
of one or more plies. Each ply can have a constant stiff-
ness, i.e. independent from x, y or a variable stiffness, i.e.
have a stiffness which is a function of x, y. The variation
of the stiffness is assumed to be related only to variation
of fiber directions in the ply.

The optimum direction for the fibers is defined as the
minimum maximum failure index in all plies in all load
cases. Constraints are formulated regarding minimum
steering radius which is related to the tow properties. In
addition plies can be specified to have a constant fiber
direction with a predefined value.

The solution requires repeated analysis of the stress
state, the calculation of all new fiber directions in the
plate, the evaluation of the failure index in all elements
and the evaluation of the manufacturing constraints. In
the next section first the finite element model is de-
scribed.

III. Finite Element Model

III.A. Kinematical Equations and Compatibility Conditions

The finite element model is based on 6-node, triangular quadratic elements using Lagrangian interpolation
functions (shape functions), Ne

i , for the in-plane, membrane, displacements, u and v:

u =

n∑
i=1

Ne
i ui v =

n∑
i=1

Ne
i vi (3)

In which ui and vi are the elements of the element’s nodal displacement vector:

ue =
{
u1 v1 u2 v2 · · · · · · u6 v6

}
(4)

At this stage no out-of-plane deformation is taking into account. The triangular elements have three
nodes at the vertices of the triangle and three nodes at the midpoints of the sides, see figure 4:

1

2

3

4

5

6

L1 = 0

L1 = 0.5

L1 = 1
P
A1A2

A3

1

2

3

4

5

6

Figure 4. Node numbering and areal coordinates quadratic triangular element.

The interpolation functions are expressed in terms of area coordinates Li:

Li =
Ai
A
,A =

3∑
i=1

Ai (5)
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The definition of the area coordinates and an illustration of the values of L1 within the element are given
in figure 4. The Cartesian coordinates x and y can be expressed in terms of the area coordinates using:

x = L1x1 + L2x2 + L3x3 (6)

y = L1y1 + L2y2 + L3y3

1 = L1 + L2 + L3

The Lagrange shape functions, Ne
i , which express the displacement in point x, y of element e related to

the displacement in node i, are given by:

Ne
1

N2
2

Ne
3

Ne
4

Ne
5

Ne
6


=



L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

4L1L2

4L2L3

4L3L1


(7)

This leads to the following approximation for the displacement field:

u =

{
u(x, y)

v(x, y)

}
=

[
Ne
i 0 Ne

2 0 · · · Ne
6 0

0 Ne
1 0 Ne

2 · · · 0 Ne
6

]
ue = Nue (8)

Assuming linear relations between strains and displacements, the strain vector ξ can be derived from the
displacement field u by derivation:

ξ =


ξx

ξy

γxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =


∂Ne

1

∂x 0
∂Ne

2

∂x 0 · · · ∂Ne
6

∂x 0

0
∂Ne

1

∂y 0
∂Ne

2

∂y · · · 0
∂Ne

6

∂y
∂Ne

1

∂y
∂Ne

1

∂x
∂Ne

2

∂y
∂Ne

2

∂x · · · ∂Ne
6

∂y
∂Ne

6

∂x

 = Bue (9)

Note that the derivatives in the matrix B are specified with respect to x and y while the shape functions
are expressed in the natural coordinates Li. Using partial differentiation we can write:

∂Ni
∂Lj

=
∂Ni
∂x

∂x

∂Lj
+
∂Ni
∂y

∂y

∂Lj
(10)

Performing the differentiation for all values of j and writing the result in matrix form yields:{
∂Ni

∂L1

∂Ni

∂L2

}
=

[
∂x
∂L1

∂y
∂L1

∂x
∂L2

∂y
∂L2

]{
∂Ni

∂x
∂Ni

∂y

}
= J

{
∂Ni

∂x
∂Ni

∂y

}
(11)

To find the global derivatives we invert J and write:{
∂Ni

∂x
∂Ni

∂y

}
= J−1

{
∂Ni

∂L1

∂Ni

∂L2

}
(12)

J can easily be derived from the relation between the global coordinates x, y and the natural coordinates
Li, Eq. 6:

J =

[
∂x
∂L1

∂y
∂L1

∂x
∂L2

∂y
∂L2

]
=

[
x1 − x3 y1 − y3

x2 − x3 y2 − y3

]
(13)

The derivatives of the shape functions with respect to the natural coordinates can be derived from Eq. 7.
For example:

∂N1

∂L1
=

∂

∂L1
L1(2L1 − 1) = 4L1 − 1 (14)

This leads to:[
∂Ni
∂Lj

]T
=

[
4L1 − 1 0 −3 + 4(L1 + L2) 4L2 −4L2 4− 4L2 − 8L1

0 4L2 − 1 −3 + 4(L1 + L2) 4L1 4− 4L1 − 8L2 −4L1

]
(15)

Multiplying this matrix with the inverse of J results in the required derivatives of the shape functions
with respect to the global coordinates and subsequently the matrix B, i.e. the kinematical relation. The
compatibility condition is satisfied through Eq. 9.
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III.B. Material Laws

Since we are considering a plane stress condition it is convenient to work with stress resultants:

Nx =

∫ h/2

−h/2
σxdz Ny =

∫ h/2

−h/2
σydz Nxy =

∫ h/2

−h/2
τxydz (16)

Since bending is not taken into account in this study, the stresses will be constant per layer k and the
stress resultants can be simplified to:

Nx =

N∑
k=1

σ(k)
x tk Ny =

N∑
k=1

σ(k)
y tk Nxy =

N∑
k=1

τ (k)
xy tk (17)

Where tk is the thickness of layer k. The relation between the plane-stress stress resultants and the
strains for a laminated plate is given by the A-matrix defined by the Classical Laminate Theory (CLT):

Nx

Ny

Nxy

 =

A11 A12 A16

A12 A22 A26

A16 A26 A66



ξx

ξy

γxy

 (18)

In which:

Aij =

N∑
k=1

(
Qij
)
k
(zk − zk−1) (19)

The coefficients
(
Qij
)
k

refer to the plane stress reduced stiffnesses of an orthotropic layer with its material
axes oriented with an angle θk with respect to the laminate coordinates. The relation between the reduced
stiffnesses of the base orthotropic layer

(
Qij
)
k

and
(
Qij
)
k

is defined by:

Q11 = U1 + U2 cos 2θk + U3 cos 4θk (20)

Q12 = U4 − U3 cos 4θk

Q21 = U1 − U2 cos 2θk + U3 cos 4θk

Q16 = (U2 sin 2θk + 2U3 sin 4θk)/2

Q26 = (U2 sin 2θk − 2U3 sin 4θk)/2

Q66 = U5 − U3 cos 4θk

In which:

U1 = (3Q11 + 3Q22 + 2Q12 + 4Q66)/8 (21)

U2 = (Q11 −Q22)/4

U3 = (Q11 +Q22 − 2Q12 − 4Q66)/8

U4 = (Q11 +Q22 + 6Q12 − 4Q66)/8

U5 = (Q11 +Q22 − 2Q12 + 4Q66)/8

The coefficients (Qij)k are known in terms of the engineering constants of the kth layer:

Q11 =
E11

1− ν12ν21
(22)

Q12 =
ν12E22

1− ν12ν21
=

ν21E11

1− ν12ν21

Q22 =
E22

1− ν12ν21

Q66 = G12

Where E is the Young’s modulus, ν the poisson ratio, and G the shear modulus.
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III.C. Surface Forces and Boundary Conditions

The stress components on the boundary of the plate must be in equilibrium with the forces applied to this
boundary, Eq. 2. If an external distributed load is assumed to work on the boundary defined by the edge of
an element between node 1 and 2 (see figure 4), the shape functions can be used to express the load on the
edge and find the nodal forces equivalent to the edge load. Since L3 equals zero on this edge we have:

p = p

∫


L1(2L1 − 1)

L2(2L2 − 1)

0

4L1L2

0

0


ds (23)

If we define the variable ξ as the variable describing the position on the edge and we take ξ1 as the value
at node 1 and ξ2 as the value at node 2, the integral can be rewritten as:

p = p

ξ2∫
ξ1



L1(2L1 − 1)

L2(2L2 − 1)

0

4L1L2

0

0


ds (24)

Using the relation: {
L1

L2

}
=

1

l12

[
ξ2 −1

−ξ1 1

]{
1

ξ

}
(25)

With l12 being the length of the edge defined by ξ2 − ξ1:

p = p
l12

6

[
1 1 0 4 0 0

]T
(26)

III.D. Stiffness Matrix, Nodal Load and Equilibrium Equations

Combining the results from sections III.A, III.B, and III.C with the principle of virtual displacements, the
stiffness matrix K and the nodal load vector f are found:

Ke =

∫
Ωe

BTABdΩe (27)

fe =

∫
Γe

NT p̂dΓ (28)

The equilibrium equations for the element e can now be expressed as:

Keue = fe (29)

Integration over the full domain, i.e. all elements, leads to:

Ku = f (30)

For the post-processing of the FE results the following equations are used to derive locals strains from
displacements: 

ξx

ξy

γxy

 =


ξx

ξy

2ξxy

 =


∂u0

∂x
∂v0
∂y

∂u0

∂y
+ ∂v0

∂x

 =

m∑
j=1


uj

∂Ne
j

∂x

vj
∂Ne

j

∂y

uj
∂Ne

j

∂y
+ vj

∂Ne
j

∂x

 (31)
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The stresses are derived from the strains with:
σx

σy

τxy


e

=

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


e

ξx

ξy

γxy

−

αxx

αyy

2αxy

∆T

 (32)

Where α is the Coefficient of Thermal Expansion (CTE) and ∆T is the change in temperature.

III.E. Mesher

Second'tier'
nodes

First'tier'
nodes

Z1
Z2

Z3

Zn+1

Z4

Z5

Zn+2

Zn+3

Zn+4

…

Wn+k

…

Z2n

…

…

…Zn

B

L/2

Figure 5. Generation of control
mesh.

In order to facilitate the generation of mesh elements in a controlled and
well-structured manner, the plate with dimensions 2L×B is divided into
three domains with lengths L/2, L, and L/2, respectively. The first and
the last domains are mirror image of each other and can be mirrored and
merged together to get the middle domain, which has a hole at the middle.
Here, we develop an algorithm for generating mesh elements only at the
middle domain, then copy appropriate parts of it on both sides to cover
the first and the last domains. The overall mesh structure is then refined
using a simple centroid adjustment process.

The mesh generation starts at the boundary of the central hole of the
middle domain, which is discretized into a finite number of nodes (n),
designated by complex number Z = X + jY . Here the origin (0,0) is at
the center of the hole and (X,Y ) are the coordinates on the periphery of
the hole, which can be a circle, ellipse or a convex polygon with rounded
corners. There will be a total of n nodes, from Z1 to Zn on the first tier
of nodes. For any two consecutive nodes Z1 and Z2 on the edge of the
hole, where a clockwise motion around the origin is required to go from
Z1 to Z2,we get the third node Zn+1, forming an equilateral triangle, see
figure 5.

Zn+1 =
Z1 + Z2

2
+ (Z2 − Z1)

√
(−3

4 ) (33)

Then Z2 and Z3 are used similarly to obtain:

Zn+2 =
Z2 + Z3

2
+ (Z3 − Z2)

√
(−3

4 ) (34)

According to figure 5, (Z1, Z2, Zn+1) and (Z2, Z3, Zn+2) are the vertices of two equilateral triangles
(elements) with Zn+1 and Zn+2 being nodes of the second tier. It is important to select the first tier nodes
in the clockwise orientation to make sure that the second tier is not being formed inside the hole. Once
the first two triangles are formed, (Zn+2, Zn+1, Z2) are taken to be the vertices of another near-equilateral
triangle filling the gap between the first two triangles. This process is repeated for all remaining first tier
nodes, which results in exactly 2n elements being formed.

The second tier is formed with nodes Zn+1 to Z2n, which are checked for concavity. Whenever a node
goes outside of the boundary of the element domain, is it pinned to the nearest point on the boundary. For
any node Zn+k within the concave part of the second tier, a corrected node Wn+k is formed. An example is
shown in figure 5:

Wn+k =

[
Zn+k −

Zk + Zk+1

2

]
hk +

Zk + Zk+1

2
(35)

Zn+k = Wn+k (36)

Where hk is an empirical parameter obtained from the geometric orientation of the first two tiers that
need not be unique for different implementation techniques. Once the second tier of nodes is fixed, the
entire process is repeated for all subsequent tiers. Each tier adds n new nodes and 2n new elements, until
any of the high level tiers intersects the boundary of the domain (dimensions L × B). In such cases, the
node Zi, going outside the boundary of the domain, is fixed at the nearest point on the boundary. If all the
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nodes on a tier require adjusting, this indicates total coverage of the domain with mesh elements. We then
we look for all elements where all three nodes are on the same vertical or horizontal line and remove the
element altogether; any of those three nodes not being shared by another valid element is also removed. This
scenario happens due to the forcing of out-of-domain nodes on the boundary. Finding and removing such
invalid nodes/elements at once is computationally more efficient than checking for such a situation during
the formation of every single node/element.

After the elements are created in the middle domain (L×B), the right half of the middle domain is copied
to the (L/2×B) domain on the left, and the left half of the middle domain is copied to the (L/2×B) domain
on the right. This leads to exactly matching nodes on the boundary of adjacent domains. Any node that
goes outside the boundary of the plate is pinned to the nearest point on the boundary, thus completely filling
the plate with elements that are mostly well-shaped. Only the elements near the boundaries of each domain
have irregular shapes due to the fact that many of them were forcefully pinned to the boundaries to prevent
them from going off the boundaries. In order to refine such elements, a vertex adjustment process is used.
This process takes every single node which is not on any boundary, finds its nearest neighbors, and shifts
the node to the average of the vertices of the polygon formed by the said neighbors. For example, if Zi is
a node that is not on any physical boundary (this excludes the domain boundary within the plate), and is
shared by six elements with nodes Wi (i = 1, 2, · · · , 6) other than Zi itself, then Zi is defined by:

Zi =

∑
Wi

6
(37)
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Figure 6. Symmetric left and right halves of the composite plate with cut-outs showing the FE mesh before and after
refinement.

This simple process, after running iteratively for several cycles, significantly reduces the number of
elements with irregular shapes, see figure 6. Even for the elements that cannot be refined fully by this
process, angular irregularity (defined by the difference of the maximum angle and minimum angle of the
element) is generally observed to be reduced. Finally, the middle point of each arm of each element is taken
as another node, converting 3-node elements into 6-node elements for improved computational accuracy.

IV. Design Variable Definition

The intent of the tool is to find the optimum fiber directions in each point of the plate. The change of
fiber direction from point to point means that the A-matrix in Eq. 27 is varying from element to element
and even within each element. There are different approaches one could take to express the variation of the
fiber directions in the stiffness matrix, Eq. 27. The use of lamination parameters has been reported as an
effective way to parameterize the A-matrix.10 This is, however, an indirect method since many lay-ups and
fiber directions will lead to one and the same A-matrix. This approach therefore needs a postprocessing step
to search for a best lay-up to achieve the optimal lamination parameter distribution. In the current study
the fiber directions themselves have been used as the design variables.

The fiber direction distribution in a layer/ply can be seen as a scalar field. To control the field within
the optimization the concept of a manufacturing mesh has been developed, see figure 7. A discretization of

8 of 14

American Institute of Aeronautics and Astronautics



the scalar field is obtained using a mesh of four node, rectangular elements. The elements have one degree
of freedom per node, the fiber angle. Within each element the local fiber angle is defined using a set of four
interpolation functions:

N1 =
1

4ab
(x− x2)(y − y4) N2 =

1

4ab
(x− x1)(y − y3) (38)

N3 =
1

4ab
(x− x4)(y − y2) N4 =

1

4ab
(x− x3)(y − y1)

With:

a = (x2 − x1)/2 b = (y4 − y1)/2 (39)

The fiber direction at point x, y in element e of ply k becomes:

φ(e) =

4∑
i=1

N
(e)
i φi (40)

1 2
…………

34

!" ,$% !" ,&%

!" ,'%
!" ,(%

Element,e,in,ply,k

Ply,k

Figure 7. Manufacturing mesh.
Each element e in ply k has four de-
grees of freedom: the nodal values
of the fiber angles.

In which φi are the values of the nodal fiber angles, i.e. the design
variables.

In principle the discretization could have been done using the trian-
gular elements used for the stress analysis. However, it was decided to
separate the two since the stress mesh needs local refinement in areas with
high stress gradients while the manufacturing mesh density is dictated by
minimum allowable steering radius which is a constant for the complete
domain. The number of elements in the manufacturing mesh is therefore
much lower and the element size can be taken constant over the domain.
To update the element stiffness matrices in each optimization step, the
new nodal values of the fiber angles are used to calculate the fiber angle
at the centroid of each stress element.

V. Objective Function and Constraint Functions

The objective function used for the optimization is the minimization
of the maximum failure index in the plate. The failure index is evaluated
at the centroid of each stress element. The Tsai-Hill failure criteria11 is used to quantify the failure index:

FI =
σ2
x

X2
+
σ2
y

Y 2
− σxσy

XY
+
τ2
xy

S2
(41)

Here X and Y are the material strength in x, y direction respectively, S is the material shear strength.
The constraints used during the optimization are the maximum allowed curvature, i.e. steering angle at the
nodes. The curvature κ is evaluated at each node of the manufacturing mesh, in each element connected to
that node with:

κ =
dφ

ds
=
∂φ

∂x

dx

ds
+
∂φ

∂y

dy

ds
(42)

With:

dx = ds cosφ dy = ds sinφ (43)

The curvature can be expressed as

κ =
dφ

ds
=
∂φ

∂x
cosφ+

∂φ

∂y
sinφ (44)

With:

∂φ

∂x
=

4∑
i=1

∂Ni
∂x

φi
∂φ

∂y
=

4∑
i=1

∂Ni
∂y

φi (45)
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Figure 8. Fiber directions for plies 3-5, left column shows angles before and right column shows results after optimiza-
tion.
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VI. Implementation and Results

The FE module, the design variable definition and the objective and constraint functions have been
implemented in a MATLAB12 program. The stiffness matrix has been integrated exactly using the symbolic
toolbox. The optimization toolbox has been used to find the optimal fiber directions at the nodes of the
manufacturing mesh. In the figures below an example of the results is shown. The laminate being optimized
consists of 10 plies, with the top and bottom two plies having a fixed fiber angle while the middle 6 plies are
steered. Layer 6, 7 and 8 are mirrored versions of layer 3, 4 and 5 (i.e. angle in layer 6 is minus angle in layer
5) so only the nodal fiber angles of layer 3, 4 and 5 are required as design variables. Initial fiber directions
for the 10 layers in degrees are [45, 135, 0, 30, 75, -75, -30, -0, 135, 45] w.r.t. the x-axis, counter-clockwise
being positive.

The manufacturing mesh has 9x8 nodes, so the number of design variables is 216. The number of
constraint functions is 224. Sequential Quadratic Programming is used as the optimizing method. The start
and optimized fiber directions for ply 3, 4 and 5 are shown in figure 8.

The optimization process evolvement is shown in figure 9. It can be seen that the objective function, the
maximum failure index in the plate, is reduced from an initial relative value of 1 to a value of 0.7.
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Figure 9. Evolvement optimization process with objective function value.

VII. Postprocessing the Results

VII.A. Methodology

Based on the fiber direction optimization results, the tow paths in each ply need to be generated. Since
the optimized fiber directions are non-geodesical and change within each ply as a function of both x and y,
i.e. the tow paths within each ply do not follow a pattern that leads to 100% coverage of the surface and a
strategy needs to be selected for seeding starting points in each ply and for cutting and re-starting tows to
create an acceptable level of coverage without too many overlaps and gaps.

A first approach for creating a tow planning seed mesh is presented here. The basic idea is to use a
polygon positioned within the boundaries of the manufacturing mesh used for the ply under consideration,
see figure 10. The line elements of the polygon are used to seed the tow paths. The most elementary
implementation of the concept is using the four sides of the plate under consideration as the four sides of a
polygon.

The concept relies on four different layered elements: laminate, manufacturing mesh, ply and polygon,
see figure 10. The relation between those is: the laminate is the final product we try to define. It consists of
plies. Each ply consists of a set of tows. The tow paths are calculated based on the fiber directions resulted
from the optimization. These fiber directions are defined at this level based on the manufacturing mesh.
The tow paths in an individual ply are calculated inside a polygon specific for the ply. The edges of the
polygon are used to calculate initial points for the tow paths.
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Figure 10. Tow path planning concept.

The tow path definition within a ply starts with
the definition of the area within the ply that will
be covered with tows. This area is defined using a
polygon. The edges of the polygon are used to create
the seeds for the tows. The basic formula used to
calculate the seeds on each edge of the polygon is:

xs,i+1 = xs,i +
tw + gw

|sin(θf,i − θe)|
ue xs,i+1<xe,2

(46)

Here tw is the tow width and gw is the gap width.
There are however conditions in which this formula
breaks down. The most often occurring failure con-
dition is a very shallow angle between the fiber di-
rection vector determined by θf,i and the edge di-
rection vector determined by θe. The formula above

will then lead to a very large step size, xs,i+1 − xs,i. This means for the case shown below that only 1 seed
point would be found on edge 1.

Currently this condition is handled through a limit on the step size in finding the next seed point based
on a lower limit of θf,i − θe. This lower limit can be coupled to the minimum tow path radius which is a
function of tow width and tow type. The minimum tow path radius is determined experimentally.

VII.B. Results

The methodology presented in section VII.A has been implemented in MATLAB.12 The results are shown
in figure 11.

VIII. Conclusion

The dual mesh approach presented in this paper for the optimization of fiber angles in a composite
plate with cut-outs is effective in decoupling the discretization for stress calculations from the mesh used
for the design variable definition. The interpolation functions used for the fiber angle calculation inside
the elements of the manufacturing mesh based on the nodal values, i.e. the design variables, allow simple
inclusion of the manufacturing constraints related to maximum allowable in-plane tow curvature. The
presented tow path planner effectively translates the continuous distribution of optimizing fiber angles in
each ply to discrete tows. The user can influence this translation by selection direction of path tracking
and combining incoming and outgoing fiber paths. This allows manufacturing engineers and designers to
incorporate practical considerations in the final design.
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Figure 11. Tow placement plies 3 to 5 with seed points based on fibers going in and out.
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