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Introduction: 
Links between Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) packages 
have been established through translators and dedicated tools for decades. Tools such as CATIA © or 
Mastercam © allow users to generate toolpaths for a large variety of machines, while maintaining 
peculiar machine specifications. Current developments in open source manufacturing, driven largely 
by the 3d printing hobbyist community, are resulting in a booming of the toolpathing technology tools 
and applications for additive manufacturing. 

The emergence of open source tools for additive manufacturing, which often discretize 
continuous motion in finite linear segments, offer an interesting opportunity: these tools are 
optimized to fill or trace a defined surface or slice of which the bound is defined from an intersection 
with a simplified surface tessellation model. The latter contains a discretized solution of a parametric 
feature as defined by a CAD program. Therefore, these tools are ignorant of any potential parametric 
surfaces or curves present in the topology to be traced. For many, more industrial, machines, the 
discretized line segments which define an arc, spline or other feature are not optimized and neglect 
higher order functionality of the ability of the machine to be programmed.  

Current industrial manufacturing tools are capable of processing an impressing flow of data and 
their ever improving accuracies assure that nearly any shape can be (re)produced accurately. Although, 
as long as tessellation is used, a significant amount of data is required to represent any arc which 
could be easily replaced with a single arc command from the manufacturing tool. Many current 
industrial manufacturing tools contain some functionality to execute arc or spline movement, which is 
beyond what the linear tessellation is able to indicate. The detection and replacement of current code 
with these higher order toolpathing functions leads to a more accurate, more efficient toolpathing 
code which simplifies not only the simulation process, but can make it easier for the operator and 
machine to interpret and simplify the massive amount of coordinates that would otherwise be 
required to define a certain path. 

This abstract aims to prove a methodology for rediscovering the parametric, higher-order features 
using the patterns present in the non-parametric model. A proof of concept to demonstrate the re-
establishment of the parametric toolpath based on a non-parametric G-Code file is applied to a KUKA 
robotic platform. Sample geometry is processed and simple G-code toolpathing commands are 
generated with open-source developed software, containing only linear movement commands and no 
higher order functionality of a more developed system. This simple toolpath generation is then 
cleaned up and scanned for patterns and features, which can then replace sections of code in higher 
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order functional toolpathing code. For the KUKA Robotic platform, Kuka Robotic Language (KRL) 
output was generated containing circular arc commands, and for-loops. 

State Of The Art: 
Recreation of optimal toolpath from discretized data is well researched in the literature [03-04-13]. 
This is particularly of interest to properly analyze and represent additive manufacturing parts [6]. It 
falls under the general context of support for computer aided process planning (CAPP) applications 
[11-12] leading to appropriate analysis for potential machining features [14]. A methodology for 
reconstructing an unknown surface from a set of scattered points is described in [02-08]. The ability to 
have boundary with complicated topology, and the conversion to splines ensured a successful attempt. 
The main setback was the non-parametrization of the construction, making the obtained model 
unusable in subsequent steps. A review on approaches for handling usable curves from CAD to CAM, 
in the Bezier format, is conducted in [1]. The authors identify multiple toolpath planning that lead to 
machining time reduction which can be appropriated. Recently, graph theories [09] and approximation 
methods [05], as well as many other topological operations, are investigated and successful specific 
results are obtained. [05] is particularly interesting to our scenario where circular arcs were a starting 
point for this research. Finally, even though a lot of this research was initiated with cutter locations in 
subtractive manufacturing [07-10-15], multiple benefits can be identified and applied for additive 
manufacturing. 

Methodology: 
G-code output from open source developed toolpath generators such as Slic3r is intrinsically limited, 
and produces parts that approximate the actual geometry. Raw G-code used in 3D printing is prone to 
infinitesimal errors stemming from the tessellation of the parametric surface. This often produces an 
inefficient and less optimal toolpath for the reproduction of the geometry. In order to create a better 
representation of the actual geometry, a higher order language is therefore desired to describe 
geometries and movements in a way that many open-source slicer-generated G-code cannot. Each line 
of the input G-code is read and stored into a list of relative movements for the machine to follow. For 
most applications, this list contains the relative X,Y,Z, E (Extrusion) and F (Feedrate) commands for 
every point the end effector must travel to. If higher order G-code was input, this list also contains the 
center point of any arc commands and the arc’s direction (clockwise or counter-clockwise), as defined 
by G2 and G3 commands. Every command from the original G-code is in this list, simply converted 
from absolute coordinates to relative coordinates. This distinction is important, as the change from 
absolute to relative coordinates allows the code to be generalized to any system, regardless of the 
location of the system’s origin. This master list of all the commands from the original G-code is then 
parsed into discrete layers or passes of the end effector by monitoring the z-coordinate of every point 
in the list. These layers are then passed off to a number of different optimization algorithms, 
described in the subsections below. 

 
 

Fig. 1: The feature recognition process for updating lower code into higher-order machine code. 
 

Collinearity Recognition 
The output G-code from many slicers contains a number of unnecessary moves or moves that could be 
concatenated into one command in the same direction, often originating from the tessellation of the 
geometry file. The removal and concatenation of these commands eliminates unnecessary complexity 
in the toolpath, which is essential for later methodologies that are to be applied to the master list. 
Collinear commands are found by examining the orientation of each movement vector, and through 
comparison of that vector to the previous vector. If the two movements are aligned within tolerance, 
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the second command is removed, and the first is replaced with a single vector that is the sum of the 
original two vectors, as shown in figure 2. This analysis is applied to every sequential pair of points for 
every layer in the part. After this process is concluded, the master list now contains a set of commands 
without redundant collinear commands. 
 

 
 

Fig. 2: Collinear movements that can be concatenated into a single command: (a) The first command, 
(b) The second command, and (c) The concatenation of the two commands into one command. 
 
Further Toolpath Cleanup 
In addition to removal of collinear commands, other small and insignificant moves may be eliminated 
from the toolpath in order to create a cleaner path. The insignificant moves removed are all moves 
with lengths that are under set machine tolerances and accuracies, as shown in figure 3. Commands 
above the tolerances are modified such that the insignificant moves are incorporated in the final 
toolpath. 
 
Arc Feature Recognition 
The optimized master list can then be parsed into layers to perform topological feature recognition 
analysis. The parser then tries to regenerate the original parametric feature based on the geometry 
from the linearized G-code. For arc commands, the parser must decide what commands may be 
considered as part of an arc, by comparing the direction change between any two sequential 
commands and comparing this to the previous direction change. If a set of movements all have 
direction changes within tolerance and the lengths are equal within tolerance, then that entire set may 
be part of an arc. One must note that identifying if a set of points is part of an arc is not trivial and 
sometimes this concatenation is not desired, so the tool must be used with caution. Figure 3c shows a 
set of moves that are considered as part of an arc by the parser. 
 

 
 

Fig. 3: Movement commands and their resulting concatenation: (a) An unnecessary short movement 
command, (b) The concatenation of that movement command with the long movement command 
trailing it and (c) A set of concentric moves that can be converted into a single arc movement. 

 
Repeated Layer Recognition 
In addition to recognition of topography in individual layers, the parser also seeks to find any layers 
that are repeated and use for-loops in a higher level language to repeat them. The parser accomplishes 
this by comparing the coordinates for every point (including arc commands) in the current layer to the 
coordinates of every point in the previous layer. This allows parts with consistent cross sections to be 
printed in very few commands (as little as 10), where before the slicer output may have hundreds of 
thousands of points. Repeated layer recognition along with 2d arc recognition allows for massive 
reductions in output file sizes, as well as a more faithful recreation of the original geometry. 
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Code generalization & Output to machine language 
The master list is generalized to a format that can be converted into any higher level language, 
involving the making of a set of all repeated layers, arcs, and any additional points that may aid any 
conversion, such as arc centers. This list can then be parsed into another higher level machine 
language. This particular parser was written to output KUKA Robotics Language (KRL), however any 
machining language could be used for output, as long as the syntax is understood by the programmer. 
The master list is written out entry by entry into commands in the higher level language, and the 
additional set lists are used to determine where for-loops and arc commands may be placed, if 
applicable in the chosen higher language. The output language may even be G-code, and if the input 
language was linear G-code, then linear and arc-supported G-code may be output to increase code 
efficiency.  

As shown in figure 4, for the case of a stadium-shaped extrusion, the ideal parser would be able to 
convert the complex toolpath with hundreds of points and layers into a 6-point, for-loop controlled 
simplified toolpath, significantly reducing the required data and optimizing the toolpath for a higher 
order code. 

 

 
 

Fig. 4: The optimizing of a stadium toolpath: (a) The desired geometry, (b) An example of an original 
toolpath, (c) One layer from the original G-Code with sufficient linear movements to approximate the 
curves (d) One layer of the optimized path with 2 linear commands and 2 arc commands (e) 
Representation of the optimized toolpath code including a for-loop. 

Application: 
In order to get a better representation of manufactured parts with respect to their digital counterparts, 
and to correct issues with the raw linear G-code, an in-house G-code parser was developed which 
cleans up toolpathing G-code, identifies higher-order functions and compiles these functions in a 
higher order robot programming language to form a more optimal, memory-efficient machine-
independent code, according to the methodology described above. The parser then outputs the code 
according to an output function which is determined by the syntax of the application that is desired. 
The general scope of the application is shown in figure 5.  
 

 
 
Fig. 5: From left to right: (a) Example of the scope of the post-processing workflow with the in-house 
developed G-code optimizer, (b) The Mendel Max 3, an off-the-shelf 3d printer controlled by G-code 
and (c) An in-house developed 3D Printer based on a KUKA Robotic platform used to run the converted 
code, controlled by KRL-code. 
 
KRL Application 
The G-code modification process was applied to an industrial KUKA Robotic Platform. This platform 
was converted into a 3D printer by reading and converting open-source generated G-code and into 
Kuka Robotic Language toolpathing commands which fit the robot controller. With the tolerances of 
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the system in mind, the insignificant length is set for 0.2mm long. This value is low enough that the 
removal and concatenation of these commands will have a negligible effect on the output geometry, as 
0.2 mm is lower than the nozzle diameter of the printer. The controller allows circular commands as 
well as other higher-order functionality such as for-loops. 
 
Examples of Toolpath Processing 
Three examples were chosen to demonstrate the toolpath processing: a simple cylinder, an elongated 
stadium, as shown in figure 4, and a more complex Y-shaped geometry, as shown in figure 6a. These 
were sliced using Slic3r, which uses the tessellated CAD surface as base for the toolpath commands, 
and run through the optimizing parser. The results of the optimization can be seen in figure 6b. 
 

 
Fig. 6: Examples and results of the optimization: (a) The Y-geometry example, (b) The effect of the 
optimization on the number of commands for a simple and complex geometry, (c & d) The stadium 
geometry 3D printed on the KUKA setup proving the successful translation of G-Code to optimized 
KRL. 

Conclusion  
The need for a reverse topological toolpath feature recognition process is identified and, based on an 
industrial application, a parser was developed while keeping the allowing for generalization of the 
process. The G-code of sample artifacts ranging in complexity was processed by the in-house 
developed parser, analyzed and processed successfully, reducing the output commands while 
increasing the toolpath efficiency and accuracy. The developed tool was able to successfully omit 
infinitesimally small and redundant features, detect repeated features and modify the toolpath in such 
a way that the resulting part forms the same or a better approximation of the desired geometry, for a 
range of complexity of the base code, paving the way for future efficiency and topological toolpath 
feature improvements. 
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