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Automated fiber is placement (AFP) is an additive manufacturing process used to fabricate 

composite structures for aerospace applications. During the AFP process, fiber steering is 

needed to manufacture curved-shell structures, or to manufacture variable stiffness plates. 

Due to steering, the carbon fiber tows undergo several deformation mechanisms which are 

classified in this paper as strain deformations, in-plane defamations (waviness and bunching) 

and out-of-plane deformations (wrinkling and folding). The aim of this work is to understand 

the in-plane deformation mechanisms that might appear during the AFP process. To do so, an 

approach is presented based on the physics of a constrained path that predicts which of the 

proposed mechanisms is predominant from an energy standpoint. A numerical scheme is 

implemented to obtain the final shape of the deformed tow based on the steering conditions as 

well as other relevant material properties and process parameters. Here only in-plane 

deformations are considered in the formulation; hence the differential length due to steering 

is absorbed by fiber waviness or compressive strains on the compressive side of the tow, and 

fiber straightening/bunching or tensile strains on the tensile side. The importance of the 

stiffness of the foundation and the steering radius on the final deformed shape of the tow is 

also discussed. 

I. Nomenclature 

A. Latin Symbols 

A = cross-sectional area 

Aij = components of the extensional stiffness matrix 

C, Cp = curve representing the centerline of the tow-path, curve parallel to the centerline 

Dij = components of the bending stiffness matrix 

d = distance from the neutral axis 

E11, E22 = modulus of elasticity along the fiber and orthogonal to the fiber’s direction respectively 

𝑭 =  force vector 

ℱ = Euler-Lagrange functional 

G = error vector function 

fx, fy = forces in the x and y-direction 

H = tow thickness 

I = moment of inertia 

J = Jacobian matrix 

K = energy stored in elastic foundation 

kx, ky = elastic modulus of the foundation in the x and y-direction  

L = length of the tow 

l' = strain along the length 

r = direction perpendicular to the fiber path 

s = direction along the fiber path  

U = elastic strain energy 

u = displacement in the x-direction 
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v = displacement in the y-direction 

w =  tow width 

W = work done by the forces 

B. Greek symbols 

γ = in-plane rotation angle 

𝚫 = total displacement vector 

δ = finite difference step 

ϵo = mid-plain strain 

κo = mid-plane curvature 

ν12 = Poisson’s ratio 

Π = total energy 

ρ =  radius of curvature 

II. Introduction 

Automated Fiber placement (AFP) is gaining advantage over hand layup processes due to improvements in 

productivity, and over automated tape laying due to the possibility of manufacturing complex shapes and producing 

steered fiber laminates. However, tow steering in AFP is limited due to potential defects that occur during the 

manufacturing process such as wrinkling and folding. These defects are mainly due to the mismatch in length between 

the straight tow delivered from the machine head and the curved path on the mold surface along the edges of the path. 

To absorb this difference in length, several mechanisms are proposed in this paper, and classified as follows: (a) strain 

deformations such as tensile, compressive, and shear which are uniform along the length, (b) localized in-plane 

deformations such as in-plane waviness and tow straightening/bunching, and (c) localized out-of-plane deformations 

such as wrinkling and folding (see Fig. 1 and Fig. 2). The presence of such defects in the manufactured composite part 

might lead to property degradation resulting in weaker parts than designed.  

 

Fig. 1: Tow deformations due to excessive steering (Courtesy of McNair Center, University of South 

Carolina) 

Common defects observed due to steering are reported in the literature to be tow buckling (wrinkling), tow pull 

up (folding), and tow misalignment [1] (in-plane deformations). Efforts to model tow wrinkling in AFP are reported 

for the case of thermoset [2] and dry fiber [3] tows. The limitation of these models is their incapability to capture 

defects that occur on the tensile side of the tow such as folding or fiber bunching, and it is difficult to apply these 

models for the case of tows laid on general surfaces. Another model to predict wrinkling that extends to general 

surfaces was presented by the authors based on the geometry of the tow-path [4, 5]. As for the case of modeling in-

plane deformations due to steering, fiber waviness was investigated as a possible mechanism on the compressive edge 

of the tow [6]. However, the deformed shape was assumed to be sinusoidal, and the corresponding amplitude and 

wavelength were determined statistically from experiments. To the authors’ knowledge, there is no effort reported in 

the literature related to modeling or understanding the occurrence of fiber bunching/straightening on the tensile side 

of the tow. 

In this paper, the carbon fiber tow used in the AFP process is modeled as several fiber bundles laying on a stiff 

foundation. The total energy of the system is derived for the case of small strains and large rotations. Detailed 

derivations and other assumptions are shown in Section III. The numerical solution approach to solve the governing 

equations is discussed in Section IV. The results for a tow placed on a constant curvature path are shown in section V 
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along with an investigation of the effect of the stiff foundation and the steering radius. Finally, conclusion, 

recommendations and future work are discussed in Section VI.  

 

Fig. 2: Deformation mechanisms for differential length absorption4 

 

III. Governing Equations 

During the AFP process, the machine head by the means of the roller forces the tow to adhere to a substrate 

following a prescribed path. Hence, the problem here is formulated in a way that the boundary of the tow satisfies a 

specific displacement field imposed by the roller due to steering. The thin tow is considered as several fiber bundles 

laying on a stiff foundation. A single bundle is shown in Fig. 3.  

 

Fig. 3: Schematic of a tow during AFP 

The total energy Π of the system shown in Fig. 3 can be expressed as: 

Π = 𝑈 −𝑊 + 𝐾 , (1) 
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where 𝑈 is the elastic strain energy, 𝐾 is the energy stored in the elastic foundation, and 𝑊 is the work generated by 

the applied forces necessary to satisfy the boundary conditions. The strain energy 𝑈 of a thin composite laminate 

structure can be expressed as [7]:  

𝑈 =
1

2
∬[𝐴11𝜖𝑠

𝑜2 + 2𝐴12𝜖𝑠
𝑜𝜖𝑟

𝑜 + 𝐴22𝜖𝑟
𝑜2 + 𝐴66𝛾𝑠𝑟

𝑜 2 + 𝐷11𝜅𝑠
𝑜2 + 2𝐷12𝜅𝑠

𝑜𝜅𝑟
𝑜 + 𝐷22𝜅𝑟

𝑜2 + 𝐷66𝜅𝑠𝑟
𝑜 2]𝑑𝑠𝑑𝑟, (2) 

where 𝑠 and 𝑟 represent the directions along and perpendicular to the path, respectively, 𝜖𝑜 and 𝜅𝑜 are the mid-plane 

strains and curvatures, and 𝐴𝑖𝑗 and 𝐷𝑖𝑗 are components of the extensional and bending stiffness matrices. In the first 

step of the in-plane tow deformations modeling the tow is restricted to deform in-plane only, hence out-of-plane terms 

in the elastic strain energy equation are dropped. In addition, the fiber bundle is assumed to be very stiff in the 

longitudinal direction, whereas the stiffness in the transverse and shear directions are mainly governed by the uncured 

resin. In a way, the tow is highly anisotropic, and the 𝐴12, 𝐴22, and 𝐴66 terms are orders of magnitude smaller in 

comparison to 𝐴11. Therefore, 𝜖𝑠
𝑜 will be the first term investigated for the case where the strains are small, but large 

rotations are applied. Hence, 𝜖𝑠
𝑜 has the form of: 

𝜖𝑠
𝑜 = 𝑙′(𝑠) − 𝑟 𝜅𝑟

𝑜(𝑠) , (3) 

where 𝑙′(𝑠) is the change in length along the fiber direction, and 𝜅𝑟
𝑜(𝑠) = 𝛾′(𝑠) is the in-plane curvature due to the 

fiber’s rotation. From classical lamination theory, and using Kirchhoff-Love assumptions, the components of the 

stiffness matrix  𝐴𝑖𝑗 are obtained from: 

𝐴𝑖𝑗 =∑{𝑄𝑖𝑗}𝑛
(𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1

 (4) 

For the case of a single layer tow 𝑛 = 1, 𝑧0 = −𝐻/2 and 𝑧1 = 𝐻/2 with 𝐻 being the thickness of the tow, the 𝐴11 

term becomes: 

𝐴11 = 𝑄11𝐻, (5) 

with: 

𝑄11 =
𝐸11
2

𝐸11 − 𝜈12
2 𝐸22

 ≅ 𝐸11, (6) 

since the modulus in the transverse direction 𝐸22 is order of magnitudes smaller than the modulus in the longitudinal 

direction 𝐸11 for an uncured thermoset prepreg tow. Therefore, the strain energy can be expressed as: 

𝑈 =
1

2
∫ ∫ 𝐴11 𝜖𝑠

𝑜2 𝑑𝑟 𝑑𝑠

𝑤
2

−
𝑤
2

𝐿

0

=
1

2
∫ 𝐸11(𝐴 𝑙

′2(𝑠) + 𝐼 𝛾′2(𝑠)) 𝑑𝑠
𝐿

0

 , (7) 

with 𝐴 = 𝐻 𝑤 being the cross-sectional area of the tow, and 𝐼 = (𝐻 𝑤3)/12 its moment of inertia. 

The total work 𝑊 generated by the applied forces 𝑭 = {𝑓𝑥, 𝑓𝑦} can be expressed as: 

𝑊 =  𝑭 ∙ 𝚫 , (8) 

with 𝚫 = {(𝑥𝐿 − 𝑥0) − 𝐿, (𝑦𝐿 − 𝑦0) − 0} being the total displacement vector. The relationship between differential 

lines in the x and y-directions (𝑑𝑥 and 𝑑𝑦), strain, arc-length, and rotation is shown in Fig. 4, and can be expressed 

as: 

𝑑𝑥 = (𝑑𝑠 + 𝑑𝑙) cos 𝛾 = (1 +
𝑑𝑙

𝑑𝑠
) cos 𝛾  𝑑𝑠 , (9) 

𝑑𝑦 = (𝑑𝑠 + 𝑑𝑙) sin 𝛾 = (1 +
𝑑𝑙

𝑑𝑠
) sin 𝛾 𝑑𝑠 . (10) 

 

  

Fig. 4: Strain-rotation relationship and displacement components 
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Integrating both sides of equations (9) and (10) between 0 and a total length 𝐿, it can be shown that: 

𝑥𝐿 − 𝑥0 = ∫ (1 + 𝑙′) cos 𝛾  𝑑𝑠
𝐿

0

 , (11) 

𝑦𝐿 − 𝑦0 = ∫ (1 + 𝑙′) sin 𝛾  𝑑𝑠
𝐿

0

 . (12) 

Replacing equations (11) and (12) into equation (8), the total amount of work required at equilibrium can be 

obtained as follows: 

𝑊 = 𝑓𝑥 [∫ (1 + 𝑙′) cos 𝛾  𝑑𝑠
𝐿

0

− 𝐿]  + 𝑓𝑦∫ (1 + 𝑙′) sin 𝛾  𝑑𝑠
𝐿

0

 . (13) 

Lastly, the energy term resulting from the elastic foundation can be expressed as: 

𝐾 =
1

2
∫ 𝑘𝑥

𝐿

0

𝑢2(𝑠) 𝑑𝑠 +
1

2
∫ 𝑘𝑦

𝐿

0

𝑣2(𝑠) 𝑑𝑠 , (14) 

where, 𝑘𝑥 and 𝑘𝑦 are the modulus of the foundation in the 𝑥 and 𝑦 direction respectively and having the dimension of 

a force divided by the square of a length [8]. Here, 𝑢(𝑠) and  𝑣(𝑠) refer to the displacement in the 𝑥 and 𝑦 directions 

respectively, and are expressed as: 

𝑢(𝑠) = 𝑥(𝑠) − 𝑥𝑟𝑒𝑓(𝑠), (15) 

𝑣(𝑠) = 𝑦(𝑠) − 𝑦𝑟𝑒𝑓(𝑠), (16) 

𝑥𝑟𝑒𝑓(𝑠) and 𝑦𝑟𝑒𝑓(𝑠) are the reference coordinates of the initial undeformed tow. Hence the total potential energy of 

the deformed tow is expressed as: 

Π =
1

2
∫ (𝐸11𝐴𝑙

′2 + 𝐸11𝐼𝛾
′2) 𝑑𝑠

𝐿

0

− 𝑓𝑥 [∫ (1 + 𝑙′) cos 𝛾  𝑑𝑠
𝐿

0

− 𝐿] − 𝑓𝑦∫ (1 + 𝑙′) sin 𝛾  𝑑𝑠
𝐿

0

+
𝑘𝑥
2
∫ 𝑢2(𝑠) 𝑑𝑠
𝐿

0

+
𝑘𝑦

2
∫ 𝑣2(𝑠) 𝑑𝑠
𝐿

0

 . 

(17) 

IV. Numerical Solution Approach 

The total energy shown in equation (17) contains 4 unknown functions 𝛾(𝑠), 𝑙(𝑠), 𝑥(𝑠), and 𝑦(𝑠), and 2 unknown 

constants  𝑓𝑥 and 𝑓𝑦. Note that 𝑥(𝑠)  and 𝑦(𝑠) can be expressed in terms of 𝛾(𝑠) and 𝑙(𝑠) by integrating equations (9) 

and (10), hence, the functional Π can be expressed in terms of the first two functions only as: 

Π(𝛾(𝑠), 𝑙(𝑠)) = ∫ ℱ(𝑠, 𝛾(𝑠), 𝛾′(𝑠), 𝑙′(𝑠)) 𝑑𝑠 
𝐿

0

 (18) 

Using Euler-Lagrange principle to minimize the total energy Π, the following set of partial differential equations 

has to be satisfied: 

{
 

 
𝑑

𝑑𝑠
(
𝜕ℱ

𝜕𝛾′
) −

𝜕ℱ

𝜕𝛾
= 0

𝑑

𝑑𝑠
(
𝜕ℱ

𝜕𝑙′
) −

𝜕ℱ

𝜕𝑙
= 0 .

 (19) 

By evaluating the partial derivatives in equation (19), and including the two additional equations relating 𝑥(𝑠) and 

𝑦(𝑠) to 𝛾(𝑠) and 𝑙(𝑠), the following system of differential equations can be obtained: 

𝑺𝒚𝒔𝒕𝒆𝒎(𝑓𝑥, 𝑓𝑦 , 𝑠) =

{
 
 

 
 𝐸11𝐼 𝛾

′′ − 𝑓𝑥(1 + 𝑙
′) sin 𝛾 + 𝑓𝑦(1 + 𝑙

′) cos 𝛾 + 𝑘𝑥𝑢 𝑦 − 𝑘𝑦𝑣 𝑥 = 0 

𝐸11𝐴 𝑙
′ = 𝐹 + 𝑓𝑥 cos 𝛾 + 𝑓𝑦 sin 𝛾 − 𝑘𝑥𝑢 𝑥 − 𝑘𝑦𝑣 𝑦

𝑥′ = (1 + 𝑙′) cos 𝛾

𝑦′ = (1 + 𝑙′) sin 𝛾

 . 

 

(20) 

Equation (20) contains a 2nd order derivative of 𝛾 and 1st order derivatives for 𝑙, 𝑥, and 𝑦. Hence, five boundary 

conditions are needed. The starting point of the path can provide four of them:  

At s = 0:  𝛾(0) = 𝑙(0) = 𝑥(0) = 𝑦(0) = 0 ,  (21) 

and the remaining boundary condition is obtained at the endpoint:  

At s = L:  𝛾(𝐿) =  𝛾𝐿 .  (22) 

The remaining unknowns in equation (20) are the forces 𝑓𝑥 and 𝑓𝑦. These forces have to satisfy two remaining 

boundary conditions 𝑥𝐿 and 𝑦𝐿; the coordinates of the endpoint of the fiber bundle enforced by the roller at s = L. To 
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accomplish that, an iterative approach is implemented as shown in Fig. 5. First, an initial value for the forces is 

assumed. A good starting point can be assumed as 𝑓𝑥𝑜 = 𝑓𝑦0 = 0. Then, the system in (20) can be solved for these 

assumed values, and the functions 𝑥(𝑠) and 𝑦(𝑠) can be obtained. To ensure the boundary conditions are fulfilled, the 

following vector function providing two additional equations must be satisfied:  

𝑮(𝑓𝑥, 𝑓𝑦) = {
𝑥∗(𝑓𝑥, 𝑓𝑦) − 𝑥𝐿

𝑦∗(𝑓𝑥, 𝑓𝑦) − 𝑦𝐿
} = 𝟎 , (23) 

where 𝑥∗ and 𝑦∗ are the values of 𝑥(𝑠) and 𝑦(𝑠) evaluated at s = L. Newton-Raphson method is applied to the system 

of equations in (23) iteratively to determine the forces 𝑓𝑥 and 𝑓𝑦 such that: 

{
𝑓𝑥𝑛+1
𝑓𝑦𝑛+1

} = {
𝑓𝑥𝑛
𝑓𝑦𝑛

} − 𝑐 𝐽−1 (𝑓𝑥𝑛, 𝑓𝑦𝑛)  𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛) , (24) 

where 𝐽 (𝑓𝑥𝑛, 𝑓𝑦𝑛) is the Jacobian matrix for the vector function 𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛): 

𝐽 = [
𝜕𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛)

𝜕𝑓𝑥

𝜕𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛)

𝜕𝑓𝑦
] . 

 

(25) 

Note that the vector function 𝑮(𝑓𝑥, 𝑓𝑦) requires solving the system in (20) numerically then evaluating the 

numerical values of 𝑥∗ and 𝑦∗ at 𝑠 = 𝐿. Therefore, the partial derivatives in the Jacobian matrix (25) cannot be 

evaluated analytically and a numerical method must be used. Here, a finite difference technique such as the central 

difference is used to approximate the numerical value of the Jacobian matrix: 

𝐽 ≅ [
𝑮 (𝑓𝑥𝑛 + 𝛿, 𝑓𝑦𝑛) − 𝑮 (𝑓𝑥𝑛 − 𝛿, 𝑓𝑦𝑛)

2𝛿

𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛 + 𝛿) − 𝑮(𝑓𝑥𝑛 , 𝑓𝑦𝑛 − 𝛿)

2𝛿
] . (26) 

Note that 𝑥∗(𝑓𝑥 + 𝛿, 𝑓𝑦) and 𝑦∗(𝑓𝑥 + 𝛿, 𝑓𝑦) require solving 𝑺𝒚𝒔𝒕𝒆𝒎(𝑓𝑥 + 𝛿, 𝑓𝑦 , 𝑠). 

 

Fig. 5: Iterative approach to obtain the unknown forces 𝒇𝒙 and 𝒇𝒚 

V.Results and Discussions 

In this section, the developed governing equations and numerical solution approach are implemented for the 

specific case of a tow placed on a flat surface and following a circular path. The corresponding end-point boundary 

conditions are first presented. Then, the results are shown for compressive and tensile regions within the tow and at 

different tow length. The effect of the foundation stiffness as well as the steering radius are also investigated. 

A. Boundary Conditions 

A steered tow-path at a constant curvature is considered for investigation. A possible arc-length parametrization 

for a constant curvature path (circular arc) is: 
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𝑪(𝑠) = {𝑥(𝑠), 𝑦(𝑠)} = {

𝜌 sin
𝑠

𝜌
           

𝜌 (1 − cos
𝑠

𝜌
)
 ,   0 ≤ 𝑠 ≤ 𝐿, (27) 

where 𝜌 is the constant radius of curvature. If we consider that 𝑪(𝑠) is the centerline of the tow-path, then the parallel 

edges of the tow-path can be found by taking the parallel curves to 𝑪(𝑠) which can be expressed as follows [9]: 

𝑪𝒑(𝑠) = {𝑥𝑝(𝑠), 𝑦𝑝(𝑠)} = {

(𝑑 + 𝜌) sin
𝑠

𝜌
        

𝜌 − (𝑑 + 𝜌) cos
𝑠

𝜌

  , (28) 

where 𝑑 can be either a positive or a negative distance. For the case where 𝑑 is positive, the parallel edge obtained by 

equation (28) corresponds to a path 𝑪𝒑(𝑠) longer than the reference path 𝑪(𝑠), or in other words, the tensile side of 

the tow. Whereas a negative value of 𝑑  corresponds to the compressive edge of the tow. The enforced boundary 

condition at the endpoint can be obtained using the following: 

{
 
 

 
 
𝑥𝐿 = 𝑥𝑝(𝐿)         

𝑦𝐿 = 𝑦𝑝(𝐿) + 𝑑 

tan 𝛾𝐿 =
𝑦𝑝
′  (𝐿)

𝑥𝑝
′  (𝐿)

 

 . (29) 

Note that for numerical convenience, the parallel paths are shifted along the y-axis by a distance 𝑑, so that the y-

coordinate of the start point corresponds to zero. 

B. Results for a compressive region 

In a first step to analyze the problem in hand, a worst-case scenario is considered where there is no adhesion (𝑘𝑥 =
𝑘𝑦 = 0). Other relevant parameters such as radius of curvature, tow thickness, width and modulus for an uncured 

thermoset pre-impregnated tow are shown in Table 1. The shape of the deformed fibers in the compressive side of the 

tow are shown in Fig. 6 for different tow length ranging from 5 mm to 40 mm. For this case, half the tow width is 

assumed under compression, and four equal separate regions within the compressive side are analyzed. The deformed 

curve representing the centroid of each fiber bundle is shown in Fig. 6 using a solid line, whereas the neutral axis and 

the compressive edge are shown using dashed lines. The first bundle is chosen to be the closest to the neutral axis, and 

the remaining bundles are aligned within a distance 𝑑 corresponding to 1/8th of the tow width. 

At a small length, the fibers on the compressive side can absorb the differential length by the mean of compressive 

strains (Fig. 6, (a) and (b)), hence the fibers remain parallel to the neutral axis as intended in the design. However, at 

a larger length, and in the absence of adhesion, the fibers tend to deform towards the neutral axis in the form of fiber 

waviness (Fig. 6, (c) and (d)). This form of deformation results in fiber angle deviation from the designed angles which 

can be quantified directly from the solution of the tangent angle 𝛾 obtained by solving the system of equations in (20). 

The solution of the four unknown functions 𝛾, 𝑙′, 𝑥, and 𝑦 from that system are shown in Fig. 7 for a tow length L = 

20 mm. It can be noticed from Fig. 6 (c) that the fiber bundle closest to the neutral axis remains parallel to the path. 

This is also reflected in the solution of the in-plane rotation 𝛾 in Fig. 7 (a): the blue line corresponding to the first 

bundle’s tangent angle is linear (since the path has a constant curvature, the tangent angle 𝛾 is a linear function of the 

arc-length s). The remaining fiber angles deviate from the original design by ±4° as represented in Fig. 7 (a). As for 

the strain along the length 𝑙′ shown in Fig. 7 (b), all four bundles experience compressive strains, where the bundle 

closest to the compressive edge experiences the most compressive strains. As for the x-coordinate shown in Fig. 7 (c), 

it can be noticed that x is a linear function of s, and the difference between the bundles across the tow width is 

negligible: this is due to the fact that the compressive strains and the rotation angle are relatively small (1 + 𝑙′ ≅ 1 

and cos 𝛾 ≅ 1 thus from equation (20), 𝑥′ ≅ 1 hence 𝑥(𝑠) ≅ 𝑠). Lastly, the y-coordinate shown in Fig. 7 (d) indicates 

that the fiber bundle closest to the compressive edge undergoes the most deformation in that direction.  

 

 

Table 1: Material property and geometry of the tow 

𝑬𝟏𝟏 𝑯 𝒘 𝝆 𝒌𝒙 = 𝒌𝒚 

130 GPa2 0.184 mm 6.35 mm 0.4 m 0 
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(a) L = 5 mm 

 

 

 
(b) L = 10 mm 

 

 
(c) L = 20 mm 

 

 

 
(d) L = 40 mm 

 

 

Fig. 6. Deformed fiber bundles under compression at different tow length 

 
(a) In-plane rotation 𝜸 

 

 

 
(b) Strain along the length  

 

 
(c)  x-coordinate  

 

 
(d) y-coordinate 

 

 

Fig. 7. Solution of equation (20) for 4 bundles under compression at L = 20 mm 
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C. Results for a tensile region 

In this section, the analysis of fiber bundles undergoing tension within the tow is shown. Similarly to the previous 

section, a worst case scenario is considered when there is no adhesion between the fiber bundles and the substrate. 

The same material properties and tow geometry are used which can be found in Table 1. Half of the tow width is 

assumed to be under tension and it is divided into four separate regions for analysis. The boundary conditions 

corresponding to the tensile case can be obtained from equations (28) and (29) using a positive distance 𝑑. The results 

corresponding to the deformed shape of the fiber bundles at four different tow-lengths (L = 10 mm, 20 mm, 40 mm, 

and 100 mm) are shown in Fig. 8.  

Similar to the compressive case, at small length, tensile strains absorb the difference in length between the path 

and the fiber bundles (Fig. 8 (a) and (b)). However at a larger length, the fiber bundles tend to straighten or bunch 

towards the centerline as shown in Fig. 8 (c) and (d). The solutions for the unknown functions of equation (20) are 

shown in Fig. 9 for four bundles at L = 40 mm. The fiber straightening phenomenon can be interpreted from the 

solution of the tangent angle 𝛾 shown in Fig. 9 (a): the fiber angle tends to be constant (≅ 3°) at the mid-length of the 

tow. This behavior is more visible for the fiber bundle closest to the tensile edge. In addition to the fiber bunching, 

tensile strains are still a significant mode of deformation as shown in Fig. 9 (b) where the fiber bundle closest to the 

tensile edge experiences the most strain. Similar to the previous section, the results for the x-coordinates show a linear 

relationship between the x-coordinate and the arc-length. Finally, the results for the y-coordinate in Fig. 9 (d) show 

the bunching/ straightening deformation mode of the fiber bundles. 

 

 
(a) L = 10 mm 

 
(b) L = 20 mm 

 
(c) L = 40 mm 

 
(d) L = 100 mm 

 

Fig. 8. Deformed fiber bundles under tension at different tow length 
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(a) In-plane rotation 𝜸 

 

 
(b) Strain along the length  

 

 
(c)  x-coordinate  

 

(d) y-coordinate 

 

 

Fig. 9. Solution of equation (20) for 4 bundles under tension at L = 40 mm 

D. Effect of the foundation’s stiffness 

In this set of results the effect of the stiffness foundation on the deformed shape of the fibers is investigated. A 

reasonable assumption can be made where the foundation is isotropic having similar values in the 𝑥 and 𝑦-directions. 

Other material properties and tow geometry are shown in Table 2. In this case, the length of the tow section, as well 

as the steering radius are kept constant, whereas the value of the foundation stiffness is varied between 0 and 1010 

N/m2. The tow is assumed to be under pure bending: half of the tow is under tension and the other half is under 

compression. Five equal separate region are considered for the analysis, where two of them represent the fiber bundles 

under tension, two for the compression, and one coincides with the neutral axis. An example of the deformed fiber 

bundles with 𝑘 = 106 𝑁/𝑚2 is shown in Fig. 10: bundle 1 and 2 are under tension, bundle 3 coincides with the neutral 

axis, and bundles 4 and 5 are under compression and undergo some fiber waviness.  

 

Table 2: Material property and geometry of the tow 

𝑬𝟏𝟏 𝑯 𝒘 𝑳 𝝆 

130 GPa 0.184 mm 6.35 mm 30 mm 0.4 m 
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Fig. 10: Deformed fiber bundles for 𝒌 = 𝟏𝟎𝟔 𝑵/𝒎𝟐 

To quantify the effect of the foundation’s stiffness on the deformation of the fiber bundles, the displacement in the 

transverse direction to the fibers 𝑢𝑟(𝑠) is considered (Fig. 4). 𝑢𝑟(𝑠) can be computed from the displacements in the 

x- and y-directions 𝑢(𝑠) and 𝑣(𝑠) using: 

𝑢𝑟(𝑠) = 𝑣(𝑠) cos 𝛾(𝑠) − 𝑢(𝑠) sin 𝛾(𝑠) . (30) 

A zero value for 𝑢𝑟 means that the fiber bundle remains in the same location as placed by the AFP machine head. 

The maximum value of the 𝑢𝑟 (in absolute value) for the five different fiber bundles is shown in Fig. 11 for different 

values of the foundation’s stiffness (logarithmic scale). Large values of 𝑘 (𝑘 > 107 𝑁/𝑚2) result in almost zero 

displacement in the transverse direction: this means that the foundation is stiff enough to hold the fibers in their 

intended location. For small values of 𝑘 (𝑘 < 106 𝑁/𝑚2), the displacement in the transverse direction is constant and 

does not change from the value of 𝑘 = 0. This indicates that the foundation is very weak and unable to resist other 

deformation modes. Finally, there is an intermediate phase where 𝑘 is between 106 𝑁/𝑚2 and 107 𝑁/𝑚2 during 

which the fiber bundles experience a slight increase in the displacement and then a sudden drop. In this phase, all 

energy terms are equally important in the governing equations resulting in a highly nonlinear system. The slight 

increase in the displacement is due to the fact that the waviness and bunching are not evenly distributed throughout 

the whole length anymore, but they are localized in one section of the tow. It is also worth to mention that fiber 

straightening on the tensile side of the tow is not as severe as the fiber waviness on the compressive side: the maximum 

displacement for bundles 1 and 2 is much smaller than the one for bundles 4 and 5. Note that the fiber bundle 

coinciding with the neutral axis does not experience any displacement in the transverse direction and remains in its 

intended location.  

 

 

Fig. 11: Effect of the foundation stiffness on the displacement in the transverse direction 

E. Effect of the steering radius  

In this section the effect of the steering radius is investigated. The same tow properties provided in Table 2 are 

considered in this section while varying the steering radius. The tow is assumed to be under pure bending, and it is 

divided into five sections: two under tension (bundle 1 and 2), two under compression (bundle 4 and 5), and one 

coinciding with the neutral axis (bundle 3). Similar to the previous section, the maximum (absolute value) of the 

displacement in the transverse direction is monitored as a function of the steering radius for two values of the 

foundation’s stiffness: 𝑘 = 0 and 107 𝑁/𝑚2. The results are shown in Fig. 12 and Fig. 13 respectively. It can be 

observed that increasing the steering radius decreases the displacement of the fiber bundles in the transverse. This is 
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predictable since a smaller steering radius of curvature means a larger difference in length between the fiber and the 

path. For the first case (worst case scenario) where the stiffness of the foundation is zero, a minimum steering radius 

of 1.5 m is required for a significantly small 𝑢𝑟. However, for the case where 𝑘 = 107 𝑁/𝑚2, only small radii of 

curvature 𝜌 < 0.5 m lead to a significant displacement of the fiber bundles in the transverse direction.  

 

 

Fig. 12: Effect of the steering radius on the displacement in the transverse direction for 𝒌 = 𝟎 

 

 

Fig. 13: Effect of the steering radius on the displacement in the transverse direction for 𝒌 = 𝟏𝟎𝟕 𝑵/𝒎𝟐 

VI. Conclusion and Future Work 

During the AFP process, steering is necessary to manufacture curved shells and variable stiffness plates. Several 

tow deformation mechanisms due to steering are proposed in this work and classified as strain deformation 

(compressive, tensile, and shear), in-plane deformations (waviness and bunching), and out-of-plane deformations 

(wrinkling and folding). The focus of this paper is to understand the formation of the in-plane ones, and to determine 

the final shape of the deformed tow based on set of material properties and process parameters. A novel approach is 

presented based on the physics of a constrained path, where the fiber tow is modeled as several fiber bundles laying 

on a stiff foundation. The total energy is derived based on the contribution of the strain energy, work, and energy 

stored in elastic foundation for the case of small strains and large rotations. The total energy of the system is then 

minimized, and the governing differential equations are generated using Euler-Lagrange principle. A novel numerical 

method is implemented to solve the differential equations and the integral boundary constraints. This method is applied 

to path steered at constant curvature (circular arc). The dominant deformation mechanism is determined based on the 

material properties and process parameters such as length, thickness, width, curvature, longitudinal bundle stiffness, 

and the stiffness of the foundation. Results show that at a small length during the additive process, strain deformation 

are dominant for the tensile and compressive areas within the tow. At larger length, fiber waviness occurs on the 
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compressive side of the tow, whereas fiber bunching/straightening occurs on the tensile side of the tow. Increasing the 

stiffness of the foundation can reduce the in-plane deformation of the tow and possibly eliminating it for a very stiff 

foundation. However, steering tow at smaller radii of curvature increases the magnitude of the in-plane deformation 

mechanisms. 

 

Future work will consist of investigating the out-of-plane deformation mechanisms, and examining the importance 

of other parameters such as shear and transverse strain. Experimental work is necessary to determine the values of the 

stiffness of the foundation and to relate it to other process parameters such as speed and layup temperature. 
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