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▪ Automated Fiber Placement (AFP)  is an additive
process used to manufacture large composites 
aerospace structures.

▪ During the process, up to 32 finite width slit-tapes 
or tows are deposited by the machine head within 
a prescribed path.

▪ During the process, the layup speed, temperature, 
roller compaction, and tow tension are controlled 
to obtain a good layup quality.

▪ Tow steering is required to fabricate curved shells 
and variable stiffness plates.

▪ During the steering, the straight tows have to 
deform to adhere to the curved path on the tool 
surface.

Introduction To AFP

AFP machine at the McNair Center 
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▪ Several deformation mechanisms are possible due to the 
mismatch of length between the tow and the prescribed 
path:

▪ Elastic strain deformations

▪ Large in-plane deformations

▪ Large out-of-plane deformations

▪ The objective is to investigate the tow deformations with 
respect to the boundary conditions, material properties, 
and other process parameters. 

Tow Deformations Due To Steering

Possible deformation mechanisms

𝑤
𝑤
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𝑤
𝑤

▪ Nomenclature:
▪ 𝛾, 𝛾′: in-plane rotation angle and in-plane curvature

▪ 𝛽, 𝛽′: out-of-plane rotation angle and curvature

▪ 𝑙′: axial strain

▪ 𝑘𝑥 , 𝑘𝑦, 𝑘𝑧: stiffness of the foundation (substrate) in the 𝑋, 𝑌 and
𝑍 directions

▪ 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧: forces at the endpoint

▪ 𝑢, 𝑣, 𝑤: displacements in the 𝑋, 𝑌 and 𝑍 directions

▪ 𝐸11: Elastic modulus in the fiber direction

Problem Formulation

2D representation of a fiber bundle 
on stiff foundation

fiber 
bundle

𝑛 fiber
bundles

¼’’

fiber tow

AFP

Strain-rotation relationship in 3D

𝑤𝑏
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Problem Formulation
Minimizing the total energy of the system, subject to the BCs constraints:

Work

𝑭 = 𝑓𝑥, 𝑓𝑦 , 𝑓𝑧

𝚫 =   𝑥𝐿 − 𝑥0 − 𝐿, (𝑦𝐿 − 𝑦0) − 0, (𝑧𝐿 − 𝑧0) − 0  

𝑊 = 𝑓𝑥    1 + 𝑙′ cos 𝛾 cos𝛽  𝑑𝑠
𝐿

0

− 𝐿 + 𝑓𝑦   1 + 𝑙′ sin𝛾 cos𝛽  𝑑𝑠
𝐿

0

+ 𝑓𝑧   1 + 𝑙′ sin𝛽 𝑑𝑠
𝐿

0

 

2D representation of a fiber bundle on 
stiff foundation

fiber 
bundle

Strain-rotation relationship in 3D

Elastic Strain 
Energy

𝑈 =
1

2
 𝐸11 𝑤𝑏𝐻𝑙

′ + 𝐼𝛾𝛾
′2 + 𝐼𝛽𝛽

′2 𝑑𝑠
𝐿

0

, 

Elastic Strain 
Energy Work

Stored 
Energy

Π = 𝑈 −𝑊 + 𝐾 , 

Stored 
Energy 𝐾 =

1

2
 𝑘𝑥

𝐿

0

𝑢2 𝑠  𝑑𝑠 +
1

2
 𝑘𝑦

𝐿

0

𝑣2 𝑠  𝑑𝑠 +
1

2
 𝑘𝑧

𝐿

0

𝑤2 𝑠  𝑑𝑠 , 
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𝐸11𝐼𝛾  𝛾 ′′ − 𝑓𝑥 sin 𝛾 cos𝛽 + 𝑓𝑦 cos 𝛾 cos𝛽 + 𝑘𝑥𝑢𝑦 − 𝑘𝑦𝑣𝑥 = 0

𝐸11𝐼𝛽𝛽
′′ − 𝑓𝑥 cos 𝛾 sin𝛽 − 𝑓𝑦 sin 𝛾 sin𝛽 + 𝑓𝑧 cos𝛽 + 𝑘𝑥𝑢𝜉 + 𝑘𝑦𝑣𝜓 − 𝑘𝑧𝑤𝜁 = 0

𝐸11𝐴𝑙
′ =  𝐹 + 𝑓𝑥 cos 𝛾 cos𝛽 + 𝑓𝑦 sin 𝛾 cos𝛽 + 𝑓𝑧 sin𝛽 − 𝑘𝑥𝑢𝑥 − 𝑘𝑦𝑣𝑦 − 𝑘𝑧𝑤𝑧 

𝑥′ =  1 + 𝑙′ cos 𝛾 cos𝛽

𝑦′ =  1 + 𝑙′ sin 𝛾 cos𝛽

𝑧′ =  1 + 𝑙′ sin𝛽

𝜉′ =  1 + 𝑙′ cos 𝛾 sin𝛽

𝜓′ =  1 + 𝑙′ sin 𝛾 sin𝛽

𝜁′ =  1 + 𝑙′ cos𝛽

 

Governing Equations
▪ Π is a functional of the form:

▪ Euler-Lagrange equations to minimize the energy

▪ Governing Equations:

▪ 14 BCs are needed to solve the system above:
▪ Start point: @

▪ End point: @

 
  
 

  
 
𝑑

𝑑𝑠
 
𝜕Π

𝜕𝛾 ′
 −

𝜕Π

𝜕𝛾
= 0

𝑑

𝑑𝑠
 
𝜕Π

𝜕𝛽′
 −

𝜕Π

𝜕𝛽
= 0

𝑑

𝑑𝑠
 
𝜕Π

𝜕𝑙′
 −

𝜕Π

𝜕𝑙
= 0

 

Π 𝛾 𝑠 ,𝛽 𝑠 , 𝑙 𝑠  =  ℱ 𝑠, 𝛾 𝑠 ,𝛾 ′ 𝑠 ,𝛽 𝑠 ,𝛽′ 𝑠 , 𝑙′ 𝑠   𝑑𝑠 
𝐿

0

 

Equilibrium

Geometry (strain-rotation relationships)

Intermediate variables

s = 0:  𝛾 0 = 𝛾0,𝛽 0 = 𝛽0, 𝑙 0 = 𝑙0, 𝑥 0 = 𝑥0,𝑦 0 = 𝑦0, 𝑧 0 = 𝑧0  𝜉 0 = 𝜓 0 = 𝜁 0 = 0 and

s = L:  𝛾 𝐿 =  𝛾𝐿 ,𝛽 𝐿 = 𝛽𝐿 , 𝑥 𝐿 = 𝑥𝐿 , 𝑦 𝐿 = 𝑦𝐿 , 𝑧 𝐿 = 𝑧𝐿 

Unknowns
𝛾 𝑠
𝛽 𝑠
𝑙′ 𝑠
𝑥 𝑠
𝑦 𝑠
𝑧 𝑠
𝜉 𝑠
𝜓 𝑠
𝜁 𝑠
𝑓𝑥
𝑓𝑦
𝑓𝑧

functions

Constants



McNAIR Center for Aerospace Innovation and Research 11Tow Deformations Due to Steering in AFP Roudy Wehbe, Brian Tatting, Zafer Gürdal, Ramy Harik

Numerical Solution Approach
▪ Introduce error function to satisfy the remaining 

3 minimization constraints 𝑥𝐿, 𝑦𝐿 and 𝑧𝐿:

▪ x*, y* and z* are the solutions of the system @ 
s=L

▪ Use Newton-Raphson method for 𝐺 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 
iteratively to find the unknown forces:

▪ J is the Jacobian matrix for the vector G, and can 
be approximated using finite difference 
techniques

𝑮 𝑓𝑥 , 𝑓𝑦 ,𝑓𝑧 =  

𝑥∗ 𝑓𝑥 ,𝑓𝑦 , 𝑓𝑧 − 𝑥𝐿

𝑦∗ 𝑓𝑥 ,𝑓𝑦 ,𝑓𝑧 − 𝑦𝐿

𝑧∗ 𝑓𝑥 ,𝑓𝑦 ,𝑓𝑧 − 𝑧𝐿

 = 𝟎 , 

 

𝑓𝑥𝑛+1

𝑓𝑦𝑛+1

𝑓𝑧𝑛+1

 =  

𝑓𝑥𝑛
𝑓𝑦𝑛
𝑓𝑧𝑛

 − 𝑐 𝐽−1  𝑓𝑥𝑛 , 𝑓𝑦𝑛 ,𝑓𝑧𝑛  𝑮 𝑓𝑥𝑛 ,𝑓𝑦𝑛 ,𝑓𝑧𝑛  , 

𝐽 =  
𝜕𝑮 𝑓𝑥𝑛 ,𝑓𝑦𝑛 , 𝑓𝑧𝑛 

𝜕𝑓𝑥

𝜕𝑮 𝑓𝑥𝑛 ,𝑓𝑦𝑛 ,𝑓𝑧𝑛 

𝜕𝑓𝑦

𝜕𝑮 𝑓𝑥𝑛 ,𝑓𝑦𝑛 ,𝑓𝑧𝑛 

𝜕𝑓𝑦
  . 
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▪ For demonstration, A constant curvature tow-
path is considered for analysis:

▪ The parallel edges of the tow-path are
expressed as:

▪ The end-point BCs can be obtained from:

Steering Boundary Conditions

Constant curvature tow-path

𝑑

𝑥𝐿, 𝑦𝐿

𝛾𝐿

𝑤

𝑪 𝑠 =  𝑥 𝑠 ,𝑦 𝑠 , 𝑧 𝑠  =  
𝜌 sin(𝑠/𝜌)

𝜌[1 −  cos(𝑠/𝜌)]
0

 ,   0 ≤ 𝑠 ≤ 𝐿, 

𝑪𝒑 𝑠 =  𝑥𝑝 𝑠 ,𝑦𝑝 𝑠 , 𝑧𝑝(𝑠) =  
(𝑑 + 𝜌) sin(𝑠/𝜌)

𝜌 − (𝑑 + 𝜌) cos(𝑠/𝜌)]
0

,   0 ≤ 𝑠 ≤ 𝐿, 

𝑥𝐿 = 𝑥𝑝 𝐿 ,𝑦𝐿 = 𝑦𝑝 𝐿 + 𝑑, 𝑧𝐿 = 0, 𝛾𝐿 =
𝐿

𝜌
,𝛽𝐿 = 0.   
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Results For a Combined Tension/Compression Region

▪ Material Properties and tow
geometry

▪ 𝜌 = 0.8 𝑚

▪ 𝐸11 = 130 𝐺𝑃𝑎

▪ 𝐻 = 0.184 𝑚𝑚

▪ w = 6.35 𝑚𝑚

▪ 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 0

▪ 𝐿 = 40 𝑚𝑚

Deformed fiber bundles Cross-section at L/2

In-plane rotation Strain along the length z-coordinate
Out-of-plane rotation

▪ Solution of the system (selected functions) 
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▪ For short length:
▪ Compressive strains are the main

deformation mechanisms

▪ For large length:
▪ Out-of-plane wrinkles start to occur

Effect Of Length Under Compression
▪ Material Properties and tow

geometry

▪ 𝜌 = 0.8 𝑚

▪ 𝐸11 = 130 𝐺𝑃𝑎

▪ 𝐻 = 0.184 𝑚𝑚

▪ w = 6.35 𝑚𝑚

▪ 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 0

▪ 𝐿 variable

@ 𝐿 = 10 𝑚𝑚

@ 𝐿 = 20 𝑚𝑚

@ 𝐿 = 40 𝑚𝑚

Deformed fiber bundles under compression at different length
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▪ For large values of 𝑘 (𝑘 > 106 𝑁/𝑚2):
▪ 𝑤 = 0 ∶The fiber bundles remain in their

position as placed by the AFP head

▪ For small values of 𝑘 (𝑘 < 105 𝑁/𝑚2):
▪ Foundation is weak and the fibers wrinkle in

the out-of-plane direction

▪ For 105 < 𝑘 < 106 𝑁/𝑚2:
▪ Transition from wrinkles to strain

deformations

Effect Of The Foundation Stiffness
▪ Material Properties and tow

geometry

▪ 𝜌 = 0.8 𝑚

▪ 𝐸11 = 130 𝐺𝑃𝑎

▪ 𝐻 = 0.184 𝑚𝑚

▪ w = 6.35 𝑚𝑚

▪ 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧: variable

▪ 𝐿 = 2 𝑚𝑚

Effect of the foundation stiffness on the wrinkle formation

Deformed bundles for 𝑘 = 105 𝑁/𝑚2
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▪ The focus of this paper is to understand the formation of tow deformations during the AFP process.

▪ The tow is modeled as several fiber bundles laying on a stiff foundation.

▪ A constant curvature path is considered in the analysis where the results show that at a small length during
the additive process, strain deformation are dominant.

▪ At larger length, fiber wrinkling occurs on the compressive side of the tow, whereas fiber
bunching/straightening occurs on the tensile side of the tow.

▪ Increasing the stiffness of the foundation can reduce the out-of-plane deformation of the tow and possibly
eliminating it for a very stiff foundation.

▪ Future work will consist of:
▪ Investigating the fiber bundles interaction in the transverse direction through shear and transverse strains.

▪ Experimental measurement of the stiffness of the foundation and relating it to other process parameters such as
speed and layup temperature.

▪ Model validation through comparison with steered tows manufactured using AFP.

Conclusions and Future Work
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