Asampe Conference & Exhibition

May 20-23, 2019 **CHARLOTTE, NC**

Fiber Tow Deformations during layup of Steered Paths using Automated Fiber Placement Process

Roudy Wehbe, Brian Tatting, Zafer Gürdal, Ramy Harik McNair Center, University of South Carolina

Conference: May 20-23, 2019 **Exhibition: May 21-22, 2019**

CHARLOTTE, NORTH CAROLINA Charlotte Convention Center

www.sampeamerica.org

Outline

- I. Introduction
	- A. Introduction To AFP
	- B. Tow Deformations Due To Steering
- II. Problem Formulation
	- A. Governing Equations
	- B. Numerical Solution Approach
- III. Results
	- A. Steering Boundary Conditions
	- B. Results For a Combined Tension/Compression Region
	- C. Effect Of Length
	- D. Effect Of The Foundation Stiffness
- IV. Conclusions and Future Work
- V. Acknowledgments and References

Introduction

A. Introduction To AFP B. Tow Deformations Due To Steering

Introduction To AFP

- **E** Automated Fiber Placement (AFP) is an **additive** process used to manufacture large composites **aerospace** structures.
- During the process, up to 32 finite width slit-tapes or tows are deposited by the machine head within a prescribed path.
- During the process, the layup **speed**, **temperature**, roller **compaction**, and **tow tension** are controlled to obtain a good layup quality.
- Tow **steering** is required to fabricate **curved** shells and **variable stiffness** plates.
- During the steering, the **straight** tows have to **deform** to adhere to the **curved path** on the tool surface.

AFP machine at the McNair Center

Tow Deformations Due To Steering

Possible deformation mechanisms

- Several deformation mechanisms are possible due to the mismatch of length between the tow and the prescribed path:
	- **Elastic strain deformations**
	- Large in-plane deformations
	- Large out-of-plane deformations
- The objective is to investigate the **tow deformations** with respect to the boundary conditions, material properties, and other process parameters.

Problem Formulation

A. Governing Equations

B. Numerical Solution Approach

Problem Formulation

Problem Formulation

Minimizing the total energy of the system, subject to the BCs constraints:

UNIVERSITY OF
SOUTH CAROLINA

Governing Equations

- 14 BCs are needed to solve the system above:
	- Start point: ω s = 0: $\gamma(0) = \gamma_0$, $\beta(0) = \beta_0$, $l(0) = l_0$, $x(0) = x_0$, $y(0) = y_0$, $z(0) = z_0$ and $\xi(0) = \psi(0) = \zeta(0) = 0$
	- End point: $@ s = L: \gamma(L) = \gamma_L, \beta(L) = \beta_L, x(L) = x_L, y(L) = y_L, z(L) = z_L$

Numerical Solution Approach

Introduce error function to satisfy the remaining 3 minimization constraints x_L , y_L and z_L :

$$
G(f_x, f_y, f_z) = \begin{cases} x^*(f_x, f_y, f_z) - x_L \\ y^*(f_x, f_y, f_z) - y_L \\ z^*(f_x, f_y, f_z) - z_L \end{cases} = 0
$$

- \bullet x^{*}, y^{*} and z^{*} are the solutions of the system ω $s=L$
- Use Newton-Raphson method for $G(f_x, f_y, f_z)$ iteratively to find the unknown forces:

$$
\begin{Bmatrix} f_{x_{n+1}} \\ f_{y_{n+1}} \\ f_{z_{n+1}} \end{Bmatrix} = \begin{Bmatrix} f_{x_n} \\ f_{y_n} \\ f_{z_n} \end{Bmatrix} - c J^{-1} \left(f_{x_n}, f_{y_n}, f_{z_n} \right) \mathbf{G} \left(f_{x_n}, f_{y_n}, f_{z_n} \right)
$$

I J is the Jacobian matrix for the vector **G**, and can be approximated using finite difference techniques

$$
J = \left[\frac{\partial \boldsymbol{G} (f_{x_n}, f_{y_n}, f_{z_n})}{\partial f_x} \quad \frac{\partial \boldsymbol{G} (f_{x_n}, f_{y_n}, f_{z_n})}{\partial f_y} \quad \frac{\partial \boldsymbol{G} (f_{x_n}, f_{y_n}, f_{z_n})}{\partial f_y} \right]
$$

Results

A. Steering Boundary Conditions B. Results For a Combined Tension/Compression Region C. Effect Of Length D. Effect Of The Foundation Stiffness

Steering Boundary Conditions

■ For demonstration, A constant curvature towpath is considered for analysis:

$$
\mathbf{C}(s) = \{x(s), y(s), z(s)\} = \begin{cases} \rho \sin(s/\rho) \\ \rho[1 - \cos(s/\rho)] \\ 0 \end{cases}, \ 0 \le s \le L,
$$

▪ The parallel edges of the tow-path are expressed as:

$$
C_p(s) = \{x_p(s), y_p(s), z_p(s)\} = \begin{cases} (d+\rho)\sin(s/\rho) \\ \rho - (d+\rho)\cos(s/\rho) \end{cases}, \ 0 \le s \le L,
$$

■ The end-point BCs can be obtained from:

$$
x_L = x_p(L), y_L = y_p(L) + d, z_L = 0, \gamma_L = \frac{L}{\rho}, \beta_L = 0.
$$

Constant curvature tow-path

Results For a Combined Tension/Compression Region. Suniversity of Result CAROLINA

Effect Of Length Under Compression

UNIVERSITY OF **SOUTH CAROLINA**

Effect Of The Foundation Stiffness

- **EXECUTE:** Material Properties and tow geometry
	- $\rho = 0.8 m$
	- $E_{11} = 130 GPa$
	- $H = 0.184$ mm
	- $W = 6.35$ mm
	- $k_x = k_y = k_z$: variable
	- $L = 2 mm$
- **For large values** of k ($k > 10^6$ N/m^2):
	- $W = 0$: The fiber bundles remain in their position as placed by the AFP head
- **For small values** of $k (k < 10^5 N/m^2)$:
	- Foundation is weak and the fibers wrinkle in the out-of-plane direction
- For $10^5 < k < 10^6$ N/m^2 :
	- **Example 15 Transition from wrinkles to strain** deformations

Conclusions & Future Work

Conclusions and Future Work

- The focus of this paper is to **understand** the formation of **tow deformations** during the AFP process.
- The tow is modeled as several **fiber bundles** laying on a **stiff foundation**.
- A **constant curvature** path is considered in the analysis where the results show that at a **small length** during the additive process, **strain** deformation are **dominant.**
- At **larger length**, **fiber wrinkling** occurs on the **compressive** side of the tow, whereas **fiber bunching/straightening** occurs on the **tensile** side of the tow.
- **E** Increasing the stiffness of the foundation can reduce the out-of-plane deformation of the tow and possibly eliminating it for a very stiff foundation.
- \blacksquare Future work will consist of:
	- Investigating the **fiber bundles interaction** in the transverse direction through **shear** and **transverse** strains.
	- **Experimental** measurement of the **stiffness** of the foundation and relating it to other process parameters such as **speed** and layup **temperature**.
	- **Model validation** through comparison with steered tows manufactured using AFP.

Acknowledgement and References

▪ **Acknowledgments**:

■ The authors would like to thank The Boeing Company for their support of this work.

▪ **References**

G. Rousseau, R. Wehbe, J. Halbritter, and R. Harik, "Automated Fiber Placement Path Planning: A State-of-the-art review," *Comput. Des. Appl.*, vol. 16, no. 2, pp. 172–203, 2019. doi:10.14733/cadaps.2019.172-203.

A. Sabido, L. Bahamonde, R. Harik, and M. J. L. Van Tooren, "Maturity assessment of the laminate variable stiffness design process," *Compos. Struct.*, vol. 160, pp. 804–812, 2017. doi:10.1016/j.compstruct.2016.10.081.

R. Harik, C. Saidy, S. Williams, Z. Gurdal, and B. Grimsley, "Automated Fiber Placement Defect Identity Cards: Cause, Anticipation, Existence, Significance , and Progression," in *SAMPE Conference & Exhibition*, 2018.

D. H. J. A. Lukaszewicz, C. Ward, and K. D. Potter, "The engineering aspects of automated prepreg layup: History, present and future," *Compos. Part B Eng.*, vol. 43, no. 3, pp. 997–1009, 2012. doi:10.1016/j.compositesb.2011.12.003.

R. Wehbe, "Modeling of Tow Wrinkling in Automated Fiber Placement based on Geometrical Considerations," University of South Carolina, 2017.

R. Y. Wehbe, R. Harik, and Z. Gurdal, "In-plane tow deformations due to steering in automated fiber placement," in *AIAA Scitech 2019 Forum*, American Institute of Aeronautics and Astronautics, 2019. doi:10.2514/6.2019-1271.

S. Rajan, M. A. Sutton, R. Wehbe, B. Tatting, Z. Gürdal, and A. Kidane, "Experimental investigation of prepreg slit tape wrinkling during automated fiber placement process using StereoDIC," *Compos. Part B*, vol. 160, no. December 2018, pp. 546–557, 2019. doi:10.1016/j.compositesb.2018.12.017.

A. Beakou, M. Cano, J. B. Le Cam, and V. Verney, "Modelling slit tape buckling during automated prepreg manufacturing: A local approach," *Compos. Struct.*, vol. 93, no. 10, pp. 2628–2635, 2011. doi:10.1016/j.compstruct.2011.04.030.

M. Y. Matveev, P. J. Schubel, A. C. Long, and I. A. Jones, "Understanding the buckling behaviour of steered tows in Automated Dry Fibre Placement (ADFP)," *Compos. Part A Appl. Sci. Manuf.*, vol. 90, pp. 451–456, 2016. doi:10.1016/j.compositesa.2016.08.014.

R. Wehbe, B. F. Tatting, R. Harik, Z. Gürdal, A. Halbritter, and S. Wanthal, "TOW-PATH BASED MODELING OF WRINKLING DURING THE AUTOMATED FIBER PLACEMENT PROCESS," *Compos. Adv. Mater. Expo CAMX2017*, 2017.

P. M. Hormann, *Thermoset automated fibre placement - on steering effects and their prediction*. 2015.