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ABSTRACT 
Automated Fiber Placement (AFP) is a manufacturing process used to fabricate composite 

structures for aerospace applications. For simple conventional laminated plate structures 

manufactured using the AFP process, fibers are laid at constant angles (0°, 90°, ±45°) in straight 

paths. However, to manufacture complex shell structures or variable stiffness plates, the straight 

fiber tows must deform to adhere to the curved paths. In this paper, those deformations are 

classified as strain deformations (tensile, compressive, shear), large in-plane deformations 

(waviness and bunching), and out-of-plane deformations (wrinkling and folding). The aim of this 

paper is to understand which of these deformation mechanisms is predominant during the 

manufacturing process. To do so, the carbon fiber tow is modeled as multiple fiber bundles placed 

on a stiff elastic foundation within a constrained curved path. The governing nonlinear differential 

equations are derived based on minimizing the total energy of the system, and the final shape of 

the deformed tow is obtained by solving the system numerically. Mainly, compressive strains, 

fiber waviness, and/or wrinkling are the main deformation modes on the compressive side of the 

tow, whereas tensile strain, fiber bunching, and/or tow folding occur on the tensile side. The 

importance of the material properties, radius of curvature, stiffness of the foundation and other 

process parameters on the final shape of the deformed tow is also discussed. 

1. INTRODUCTION 

The usage of Automated Fiber placement (AFP) especially in the aerospace industry is gaining 

advantage over hand layup due to improvements in productivity, and over automated tape laying 

due to the possibility of manufacturing complex shapes. Traditionally, fibers are laid at constant 

angles in straight paths over flat tools, however, manufacturing complex shell structures using 

AFP machines requires steering fibers possibly over doubly curved tools even for constant-angles 

paths [1]. In addition, having the ability to steer fiber tows on flat surfaces, fiber placement 

machines can thus increase the design space of composite structures by allowing the manufacture 

of variable stiffness panels [2]. However during the manufacturing process, several defects may 

arise [3] for several reasons such as material variability, geometry, machine parameters or others, 

hence possibly reducing the quality of the produced part. Concerning tow steering using AFP, the 

process is limited to defects that occur due to the mismatch in length between the straight tow and 

the curved tow-path on the tool such as wrinkling and folding [4]. To absorb this difference in 

length, several mechanisms are proposed in the literature ([5],[6]), and classified as follows: (a) 

strain deformations such as tensile, compressive, and shear which are uniform along the length, 



(b) localized in-plane deformations such as in-plane waviness and tow straightening/bunching, and 

(c) localized out-of-plane deformations such as wrinkling and folding (see Figure 2 and Figure 1). 

 

Figure 1. Deformation mechanisms for differential length absorption [5] 

 

 

Figure 2. Tow deformations due to excessive 

steering (Courtesy of McNair Center, University of 

South Carolina) [6] 

 

Figure 3. Effect of substrate defect on the 

out-of-plane deformations of a steered tow 

[7]  

Experimental measurements of these deformations can be accomplished using stereo digital image 

correlation [7], and the results show a strong interaction between the steered tow and the tool 

substrate (Figure 3). Regarding the modeling efforts of these deformations, tow wrinkling is 

modeled in the literature as a plate resting on an elastic foundation for the case of thermoset [8] 

and dry fiber [9] tows. The limitation of these models is their inability to capture defects that occur 

on the tensile side of the tow such as folding, their inability to capture in-plane deformations, and 

it is difficult to extend these models for the case of tows laid on general surfaces. Another model 

to predict wrinkling that extends to general surfaces is presented in the literature ([5], [10]) based 



on the geometry of the tow-path. As for the case of modeling in-plane deformations due to steering, 

fiber waviness is investigated as a possible mechanism on the compressive edge of the tow [11]. 

However, the deformed shape was assumed to be sinusoidal, and the corresponding amplitude and 

wavelength are determined statistically from experiments. Another model that captures both the 

tensile and compressive in-plane deformations such as waviness and bunching is presented by the 

authors [6]. This paper is an extension to the previous model to include the out-of-plane 

deformations of the tow during the AFP process. 

In this paper, the carbon fiber tow used in the AFP process is modeled as several fiber bundles 

laying on a stiff foundation. The total energy of the system is derived for the case of small strains 

and large rotations, allowing the bundles to deform in space while being restricted by the 

foundation stiffness and the boundary conditions enforced by the roller. The detailed derivations 

of the equilibrium equations and the numerical solution approach to solve them are presented in 

Section 2. The results for a tow placed on a constant curvature path are shown in Section 3 along 

with an investigation of the effect of the stiff foundation and the tow length. Finally, conclusion, 

recommendations and future work are discussed in Section 4.  

2. GOVERNING EQUATIONS 

In this section, the derivations of the equilibrium equations for a single bundle deforming in space 

are shown first. Then a numerical solution algorithm is presented showing how the obtained 

governing equations are solved.  

2.1 Derivation of the Equilibrium Equations 

During the AFP process, the machine head by the means of the roller forces the tow to adhere to a 

substrate following a prescribed path. Hence, the problem here is formulated in a way that the 

boundary of the tow has to satisfy a specific displacement field imposed by the roller due to 

steering. The thin tow is considered as several fiber bundles laying on a stiff foundation. A 

representation of a single bundle deformed in 2D is shown in Figure 4. Here, the in-plane 

deformations of the tow are induced by the end-forces 𝑓𝑥 and 𝑓𝑦 enforced by the roller at a specific 

endpoint (𝑥𝐿 , 𝑦𝐿) and at a prescribed rotation 𝛾𝐿. These deformations are restricted by the stiffness 

of the foundation in the x and y-directions kx and ky representing the adhesion of the tow to the 

substrate [6]. For the case where the fiber bundle is allowed to deform in the out-of-plane direction, 

an additional force fz is required at the endpoint, and the foundation’s resistance to this deformation 

is represented through the stiffness term kz. The relationship between the out-of-plane rotation 

angle 𝛽, the in-plane rotation 𝛾 and the corresponding arc-length and strain can be visualized in 

Figure 5. The total energy Π of the system can be expressed as: 

Π = 𝑈 −𝑊 +𝐾 , [1] 
where 𝑈 is the elastic strain energy, 𝐾 is the energy stored in the elastic foundation, and 𝑊 is the 

work generated by the applied forces necessary to satisfy the boundary conditions. 

A simplification of the strain energy term for the in-plane case is presented in [6] where small 

strains and large rotations are taken into considerations for the fiber bundle. It is also assumed that 

the tow is highly anisotropic: the stiffness in the fiber direction is orders of magnitudes larger than 

the transverse stiffness and shear since these properties are mainly governed by the uncured resin. 



Hence, the elastic strain energy will only include terms for related to the longitudinal stiffness, as 

well as the fiber extension 𝑙′(𝑠), the in-plane curvature 𝛾′(𝑠), and the out-of-plane curvature 𝛽′(𝑠): 

𝑈 =
1

2
∫ 𝐸11(𝑤𝑏𝐻𝑙

′ + 𝐼𝛾𝛾
′2 + 𝐼𝛽𝛽

′2)𝑑𝑠
𝐿

0

, [2] 

where 𝐼𝛾 and 𝐼𝛽 the moments of inertia corresponding to the in-plane bending and out-of-plane 

bending respectively, 𝑤𝑏 is the width of a single bundle, and 𝐸11 is the stiffness in the longitudinal 

direction. For the case where the tow bundle has a rectangular cross section and if its shape does 

not change along the length, 𝐼𝛾 and 𝐼𝛽 can be expressed in terms of the bundle width 𝑤 and the 

thickness 𝐻 as: 

𝐼𝛾 =
1

12
𝐻 𝑤𝑏

3, 𝐼𝛽 =
1

12
𝑤𝑏 𝐻

3 [3] 

 

 

Figure 4. A 2D representation of a fiber bundle 

during AFP [6] 

 
 

 

Figure 5. Strain rotation relationship in 3D 

The total work 𝑊 generated by the applied forces 𝑭 = {𝑓𝑥, 𝑓𝑦 , 𝑓𝑧} can be expressed as: 

𝑊 =  𝑭 ∙ 𝚫 , [4] 
with 𝚫 = {(𝑥𝐿 − 𝑥0) − 𝐿, (𝑦𝐿 − 𝑦0) − 0, (𝑧𝐿 − 𝑧0) − 0} being the total displacement vector. The 

relationship between differential lines in the x, y and z-directions (𝑑𝑥, 𝑑𝑦 and 𝑑𝑧), strain, arc-

length, and rotations is shown in Figure 5, and can be expressed as: 

𝑑𝑥 = (𝑑𝑠 + 𝑑𝑙) cos 𝛾 cos 𝛽 = (1 + 𝑙′) cos 𝛾 cos 𝛽 𝑑𝑠 , [5] 
𝑑𝑦 = (𝑑𝑠 + 𝑑𝑙) sin 𝛾 cos 𝛽 = (1 + 𝑙′) sin 𝛾 cos 𝛽 𝑑𝑠 , [6] 

𝑑𝑧 = (𝑑𝑠 + 𝑑𝑙) sin 𝛽 = (1 + 𝑙′) sin 𝛽 𝑑𝑠 . [7] 

Integrating both sides of equations [5]-[7] between 0 and the bundle length 𝐿, and inserting them 

back into equation [4], the expression of the total work 𝑊 can be generated as: 

𝑊 = 𝑓𝑥 [∫ (1 + 𝑙′) cos 𝛾 cos 𝛽  𝑑𝑠
𝐿

0

− 𝐿] + 𝑓𝑦∫ (1 + 𝑙′) sin 𝛾 cos𝛽  𝑑𝑠
𝐿

0

+ 𝑓𝑧∫ (1 + 𝑙′) sin 𝛽 𝑑𝑠
𝐿

0

 

[8] 

Lastly, the energy term resulting from the elastic foundation can be expressed as: 



𝐾 =
1

2
∫ 𝑘𝑥

𝐿

0

𝑢2(𝑠) 𝑑𝑠 +
1

2
∫ 𝑘𝑦

𝐿

0

𝑣2(𝑠) 𝑑𝑠 +
1

2
∫ 𝑘𝑧

𝐿

0

𝑤2(𝑠) 𝑑𝑠 , [9] 

where, 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 represents the stiffness of the foundation in the x, y, and z-directions respectively, 

and 𝑢(𝑠), 𝑣(𝑠),𝑤(𝑠) are the displacements in these directions as well. 

The final expression of the total energy can be obtained by inserting the resulting expressions of 

the strain energy (equation [2]), work (equation [8]), and stored energy (equation [9]) into the total 

energy equation [1] Therefore, the expression of the total energy contains 6 unknown functions 

𝛾(𝑠), 𝛽(𝑠), 𝑙(𝑠), 𝑥(𝑠), 𝑦(𝑠) and 𝑧(𝑠), and 3 unknown constants 𝑓𝑥, 𝑓𝑦 and 𝑓𝑧. Note that 𝑥(𝑠), 𝑦(𝑠)  

and 𝑧(𝑠) can be expressed in terms of 𝛾(𝑠), 𝛽(𝑠) and 𝑙(𝑠) by integrating equations [5]-[7], hence, 

the functional Π can be expressed in terms of the first three functions only as: 

Π(𝛾(𝑠), 𝑙(𝑠)) = ∫ ℱ(𝑠, 𝛾(𝑠), 𝛾′(𝑠), 𝛽(𝑠), 𝛽′(𝑠), 𝑙′(𝑠)) 𝑑𝑠 
𝐿

0

 [10] 

Using Euler-Lagrange principle to minimize the total energy Π, the following set of partial 

differential equations has to be satisfied: 

{
  
 

  
 
𝑑

𝑑𝑠
(
𝜕Π

𝜕𝛾′
) −

𝜕Π

𝜕𝛾
= 0

𝑑

𝑑𝑠
(
𝜕Π

𝜕𝛽′
) −

𝜕Π

𝜕𝛽
= 0

𝑑

𝑑𝑠
(
𝜕Π

𝜕𝑙′
) −

𝜕Π

𝜕𝑙
= 0

 [11] 

By evaluating the partial derivatives of equation [11] the governing equations can be obtained as: 

{
 
 
 
 

 
 
 
 

𝐸11𝐼𝛾 𝛾
′′ − 𝑓𝑥 sin 𝛾 cos 𝛽 + 𝑓𝑦 cos 𝛾 cos 𝛽 + 𝑘𝑥𝑢𝑦 − 𝑘𝑦𝑣𝑥 = 0

𝐸11𝐼𝛽𝛽
′′ − 𝑓𝑥 cos 𝛾 sin 𝛽 − 𝑓𝑦 sin 𝛾 sin 𝛽 + 𝑓𝑧 cos 𝛽 + 𝑘𝑥𝑢𝜉 + 𝑘𝑦𝑣𝜓 − 𝑘𝑧𝑤𝜁 = 0

𝐸11𝐴𝑙
′ = (𝐹 + 𝑓𝑥 cos 𝛾 cos 𝛽 + 𝑓𝑦 sin 𝛾 cos 𝛽 + 𝑓𝑧 sin 𝛽 − 𝑘𝑥𝑢𝑥 − 𝑘𝑦𝑣𝑦 − 𝑘𝑧𝑤𝑧)

𝑥′ = (1 + 𝑙′) cos 𝛾 cos 𝛽

𝑦′ = (1 + 𝑙′) sin 𝛾 cos 𝛽

𝑧′ = (1 + 𝑙′) sin 𝛽

𝜉′ = (1 + 𝑙′) cos 𝛾 sin 𝛽

𝜓′ = (1 + 𝑙′) sin 𝛾 sin 𝛽

𝜁′ = (1 + 𝑙′) cos 𝛽

 [12] 

Note that in the above system of equations, the first three equations correspond to the equilibrium 

equations (in-plane bending, out-of-plane bending, and fiber extension respectively). The next 

three equations relate the coordinates to the fiber’s extension and rotations similarly to equations 

[5]-[7]. The last three equations in terms of 𝜉′, 𝜓′, and 𝜁′ are introduced as intermediate variables 

to avoid having their integral form in the out-of-plane bending equation. Note that all 9 equations 

shown above have to be solved simultaneously as a system of equations. 



2.2 Numerical Solution Approach 

The system of equations shown in [12] is a system of nonlinear differential equations, containing 

2nd order derivatives for 𝛾 and 𝛽, and 1st order derivatives for 𝑙, 𝑥, 𝑦, 𝑧, 𝜉, 𝜓, and 𝜁. Hence, eleven 

boundary conditions are needed for these functions. The starting point of the path can provide nine 

of them:  

At s = 0:  𝛾(0) = 𝛾0, 𝛽(0) = 𝛽0, 𝑙(0) = 𝑙0, 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 𝑧(0) = 𝑧0 ,  [13] 
𝜉(0) = 𝜓(0) = 𝜁(0) = 0. 

Note that the intermediate variables are chosen to be zero at the start point for numerical 

convenience. The remaining two boundary conditions are obtained at the endpoint:  

At s = L:  𝛾(𝐿) =  𝛾𝐿 , 𝛽(𝐿) = 𝛽𝐿 .  [14] 

 

Figure 6. Iterative approach to obtain the unknown forces 

In addition to the unknown functions, the system of equations shown in [12] contains three 

unknown forces 𝑓𝑥, 𝑓𝑦 and 𝑓𝑧. These forces have to satisfy three remaining boundary conditions 

𝑥𝐿 , 𝑦𝐿 and 𝑧𝐿; the coordinates of the endpoint of the fiber bundle enforced by the roller at s = L. 

To accomplish that, an iterative approach is implemented as shown in Figure 6. Here, 

𝑆𝑦𝑠𝑡𝑒𝑚(𝑓𝑥, 𝑓𝑦, 𝑓𝑧 , 𝑠) refer to the system of equations [12] where the forces are unknown. First, an 

initial value for the forces is assumed. A good starting point can be assumed as 𝑓𝑥0 = 𝑓𝑦0 = 𝑓𝑧0 =

0. Then, the system in [12] can be solved for these assumed values, and the functions 



𝑥(𝑠), 𝑦(𝑠) and 𝑧(𝑠) can be obtained. To ensure the boundary conditions are fulfilled, the following 

vector function providing three additional equations must be satisfied:  

𝑮(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) = {

𝑥∗(𝑓𝑥 , 𝑓𝑦, 𝑓𝑧) − 𝑥𝐿

𝑦∗(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) − 𝑦𝐿

𝑧∗(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) − 𝑧𝐿

} = 𝟎 , 
[15] 

where 𝑥∗, 𝑦 ∗ and 𝑧∗ are the values of 𝑥(𝑠), 𝑦(𝑠) and 𝑧(𝑠) evaluated at s = L. The Newton-

Raphson method is applied to the system of equations in [15] iteratively to determine the forces 

𝑓𝑥, 𝑓𝑦 and 𝑓𝑧 such that: 

{

𝑓𝑥𝑛+1
𝑓𝑦𝑛+1
𝑓𝑧𝑛+1

} = {

𝑓𝑥𝑛
𝑓𝑦𝑛
𝑓𝑧𝑛

} − 𝑐 𝐽−1 (𝑓𝑥𝑛, 𝑓𝑦𝑛, 𝑓𝑧𝑛)  𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛, 𝑓𝑧𝑛) , 
[16] 

where 𝐽 (𝑓𝑥𝑛, 𝑓𝑦𝑛, 𝑓𝑧𝑛) is the Jacobian matrix for the vector function 𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛, 𝑓𝑧𝑛): 

𝐽 = [
𝜕𝑮 (𝑓𝑥𝑛 , 𝑓𝑦𝑛, 𝑓𝑧𝑛)

𝜕𝑓𝑥

𝜕𝑮 (𝑓𝑥𝑛, 𝑓𝑦𝑛, 𝑓𝑧𝑛)

𝜕𝑓𝑦

𝜕𝑮(𝑓𝑥𝑛, 𝑓𝑦𝑛, 𝑓𝑧𝑛)

𝜕𝑓𝑦
] . [17] 

Note that the vector function 𝑮(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) requires solving the system in [12] numerically then 

evaluating the numerical values of 𝑥∗, 𝑦∗ and 𝑧∗ at 𝑠 = 𝐿. Therefore, the partial derivatives in the 

Jacobian matrix in [17] cannot be evaluated analytically and a numerical method must be used, 

such as a finite difference technique.  

3. RESULTS 

In this section, the developed governing equations and numerical solution approach are 

implemented for the specific case of a tow placed on a flat surface and following a circular path. 

The corresponding end-point boundary conditions are first presented. Then, the results are shown 

for a combined tensile and compressive region within the tow. The effect of the length of the tow 

as well as the foundation stiffness are also investigated. 

3.1 Boundary Conditions 

A steered tow-path at a constant curvature is considered for investigation. A possible arc-length 

parametrization for a constant curvature path (circular arc) is [6]: 

𝑪(𝑠) = {𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)} = {
𝜌 sin(𝑠/𝜌)

𝜌[1 − cos(𝑠/𝜌)]
0

 ,   0 ≤ 𝑠 ≤ 𝐿, [18] 

where 𝜌 is the constant radius of curvature. If we consider that 𝑪(𝑠) is the centerline of the tow-

path, then the parallel edges of the tow-path can be found by taking the parallel curves to 𝑪(𝑠) 
which can be expressed as follows [9]: 

𝑪𝒑(𝑠) = {𝑥𝑝(𝑠), 𝑦𝑝(𝑠), 𝑧𝑝(𝑠)} = {
(𝑑 + 𝜌) sin(𝑠/𝜌)

𝜌 − (𝑑 + 𝜌) cos(𝑠/𝜌)]
0

,   0 ≤ 𝑠 ≤ 𝐿, [19] 

where 𝑑 can be either a positive or a negative distance. For the case where 𝑑 is positive, the parallel 

edge obtained by equation [19] corresponds to a path 𝑪𝒑(𝑠) longer than the reference path 𝑪(𝑠), 



or in other words, the tensile side of the tow. Whereas a negative value of 𝑑  corresponds to the 

compressive edge of the tow. The enforced boundary condition at the endpoint can be obtained 

using the following: 

𝑥𝐿 = 𝑥𝑝(𝐿), 𝑦𝐿 = 𝑦𝑝(𝐿) + 𝑑, 𝑧𝐿 = 0, 𝛾𝐿 =
𝐿

𝜌
, 𝛽𝐿 = 0.   [20] 

Note that for numerical convenience, the parallel paths are shifted along the y-axis by a distance 𝑑, 

so that the y-coordinate of the start point corresponds to zero. Concerning the start point, all 

boundary conditions for the coordinates, rotations, strain, and intermediate variables are chosen to 

be zero. The out-of-plane rotation as well as the z coordinate are forced to be zero at the start and 

the end of the fiber bundle, due to the roller motion and similar to the clamped boundary 

conditions. 

3.2 Results for a combined tension/compression region 

In a first step to analyze the out-of-plane, a worst-case scenario is considered where there is no 

adhesion (𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 0). Other relevant parameters such as radius of curvature, tow 

thickness, width and modulus for an uncured thermoset pre-impregnated tow are shown in Table 

1. The shape of the deformed fibers in the compressive side of the tow as well as the tensile side 

are shown in Figure 7 for a length of 4 cm. For this case, half the tow width is assumed under 

compression, and the other half under tension. Five bundles are chosen here for analysis where 

two of them are laying in the region under compression, two in the region under tension, and one 

coinciding with the neutral axis. The deformed curve representing the centroid of each fiber bundle 

is shown in Figure 7 using a dotted line, whereas the tensile and compressive edges are shown 

using solid lines.  

 

 

Figure 7: Deformed fiber bundles in 3D under 

combined loading 

 

 

Figure 8: Maximum z-displacement of 

the fiber bundles at L/2 

 

 



 

 

 
(a) x- coordinate 

 
(b) y-coordinate 

 
(c) z-coordinate 

 
(d) In-plane rotation 

 
(e) Out-of-plane rotation 

 
(f) length change 

 

Figure 9: Solution of equation [12] for 5 bundles under combined loading 

 

Table 1: Material property and geometry of the tow deforming out-of-plane 

𝑬𝟏𝟏 𝑯 𝒘 𝝆 𝒌𝒙 = 𝒌𝒚 = 𝒌𝒛 𝑳 

130 GPa 0.184 mm 6.35 mm 0.8 m 0 4 cm 

 

A first look at the deformed shape of the tow in Figure 7 shows that the fiber bundles on the 

compressive edge of the tow have deformed in the out-pf-plane direction to form a wrinkle. The 

remaining fiber bundles laying on the neutral axis and in the tensile region have deformed in-plane. 

A detailed view of tow cross-section taken at half-length showing the maximum displacement in 



the z-direction is shown in Figure 8. This confirms that only the bundles under compression are 

deforming in the out-of-plane direction. Details of the results of the governing equation [12] for 

the five bundles are shown in Figure 9. Bundles 4 and 5 in the compressive region deform out-of-

plane as shown in the z-coordinate plot and the out-of-plane rotation angle 𝛽. Bundle 3 coinciding 

with the neutral axis remains in-plane and parallel to the path, whereas the bundles under tension 

deformed in-plane in the fiber bunching/straightening mode. This is reflected in the plot of the y-

coordinate as well as in the in-plane rotation angle 𝛾. Lastly, the axial strain represented in the 

length change plot shows that the fiber bundles on the tensile side have extended significantly to 

absorb the length difference, however, the axial strain for the bundles under compression is 

significantly smaller, indicating that most of the length difference is compensated for by the out-

of-plane deformation.  

3.3 Effect of the Length 

In this section, the effect of the length of the fiber bundles is investigated for five bundles placed 

under compression. The material properties and tow geometry are the same as the one used in the 

above section (see Table 1). Three different bundle lengths (1, 2, and 4 cm) are investigated, and 

the results showing the deformed shape of the tow bundles are presented in Figure 10. At a small 

length of 1 cm, the fiber bundle remains in-plane, and the differential length is absorbed by means 

of compressive strains. However, as the length increases, the fiber bundles closest to the 

compressive edge starts to deform in the z-direction as shown for the case of L = 2 cm, except the 

fiber bundle closest to the neutral axis which remains in-plane. This is due to the fact that the 

differential length close to the neutral is small and increases as the fiber are placed further away 

from the neutral axis. At a significantly larger length, all fiber bundles under compression buckle 

in the out-of-plane direction to form a wrinkle.  

 
(a) L=1 cm 

 
(b) L=2 cm 

 
(c) L = 4 cm 

Figure 10: Effect of the length on the out-of-plane deformation of bundles under compression 



3.4 Effect of the foundation stiffness 

In this set of results the effect of the stiffness foundation on the deformed shape of the fiber bundles 

is investigated. A reasonable assumption can be made where the foundation is isotropic having 

similar values in the 𝑥 , 𝑦 and 𝑧-directions. Other material properties and tow geometry are shown 

in Table 2. In this case, the length of the tow section, as well as the steering radius are kept constant, 

whereas the value of the foundation stiffness is varied between 0 and 108 N/m2. The tow is assumed 

to be under compression, where five equal separate regions are considered for the analysis.  

To quantify the effect of the foundation’s stiffness on the deformation of the fiber bundles, we 

focus on the displacement in the z- direction. This corresponds to the z-coordinate, since it is 

assumed that the fiber bundles are placed on a flat surface. The results for the five fiber bundles 

are shown in Figure 11 for different values of the foundation’s stiffness (logarithmic scale). Large 

values of 𝑘 (𝑘 > 106 𝑁/𝑚2) result in zero displacement in the z- direction: this means that the 

foundation is stiff enough to hold the fibers in their intended location, and the layup is wrinkle 

free. For small values of 𝑘 (𝑘 < 105 𝑁/𝑚2), the displacement in the z- direction is constant and 

does not change from the value of 𝑘 = 0. This indicates that the foundation is very weak and 

unable to resist the out-of-plane deformation. 

Table 2: Material property and geometry of the tow 

𝑬𝟏𝟏 𝑯 𝒘 𝑳 𝝆 

130 GPa 0.184 mm 6.35 mm 2 cm 0.8 m 

 

 

 

Figure 11: Effect of the foundation stiffness in the z-direction on the wrinkle formation 

4. CONCLUSIONS 

In this paper, a simplified model simulating the deformations of a tow steered using the AFP 

process. The tow is modeled as multiple bundles deforming in space and laying on a stiff 

foundation. The material properties of the tow in transverse and shear directions are neglected in 

the energy formulation when compared with the longitudinal stiffness. The resulting total energy 

of the system is minimized for the case of small strains and large rotations, thus generating the 

governing equations in the form of a system of nonlinear differential equations. A numerical 

solution algorithm is presented to solve the unknown functions and end-point forces in the 



governing equations. The model is implemented for the case of a tow steered at a constant 

curvature and placed on a flat surface. Results show that at small length scale, the differential 

length between the tow and the path is absorbed through compressive and tensile strains. At a 

larger length, wrinkling and fiber bunching can occur on the compressive side of the tow, whereas 

tow bunching/straightening occurred on the tensile side. The effect of the stiffness of the 

foundation on the wrinkling formation is studied. For a weak foundation (𝑘 < 105 𝑁/𝑚2), the 

wrinkling magnitude is not affected when compared to no adhesion. For a larger value of the 

foundation’s stiffness, wrinkles collapse and the differential length is absorbed through strain 

deformations. 

Future work will include the interaction of multiple bundles in the transverse and shear directions, 

and thus possibly capturing the tow folding mechanism on the tensile side. In addition, 

experimental work is necessary to correlate the values of the stiffness of the foundation with 

respect to other process parameters such as surface temperature, roller pressure, and layup speed. 
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