
Journal of Manufacturing Systems 57 (2020) 274–286

Available online 15 October 2020
0278-6125/© 2020 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

Optimizing smart manufacturing systems by extending the smart products 
paradigm to the beginning of life 

Juergen Lenz a, Eric MacDonald b, Ramy Harik c, Thorsten Wuest a,* 
a Industrial and Management Systems Engineering, Benjamin M. Statler College of Engineering and Mineral Resource, West Virginia University, Morgantown, WV 26506, 
United States 
b Advanced Manufacturing Research Center, Youngstown State University, Youngstown, OH 44555, United States 
c McNair Aerospace Center, University of South Carolina, Columbia, SC 29208, United States   

A R T I C L E  I N F O   

Keywords: 
Smart product 
Smart manufacturing 
Integrated sensor system 
Data analytics 
PLM 
Industry 4.0 

A B S T R A C T   

The research objective of this work is to enhance the perception of, sensing in, and control of smart manufacturing 
systems (SMS) by leveraging active sensor systems within smart products during the manufacturing phase. Smart 
manufacturing utilizes rich process data, usually collected by the SMS (e.g., machine tools), to enable accurate 
tracking and monitoring of individual products throughout the process chain. However, until now, the to-be- 
manufactured product itself has not contributed to the sensing and compilation of product and process data. 
More specifically, data measured from the product’s structure during its own fabrication. In this paper, we 
discuss and evaluate the opportunity to actively use the capabilities of smart products within a SMS in terms of 
technical and economic feasibility. This opportunity emerged only recently with the advancements in smart 
products engineering. In this research, we developed a smart product prototype and evaluated it on a SMS 
testbed (CPlab) with eight distinct, fully-connected manufacturing processes. The results of the conducted ex
periments show the possibility to uniquely identify two distinct ‘fingerprints’ of manufacturing processes solely 
based on data provided by sensors within the smart product itself. The sensor data was collected directly from the 
smart product before manufacture was completed, yet after the intended sensor functionality during the prod
uct’s use phase was activated. The capability to automatically, accurately, and reliably identify process signa
tures and even inform the optimization of manufacturing parameters creates new opportunities for 
improvements in quality, scheduling, and seamless transparency across the whole value chain.   

1. Introduction 

Every manufactured product today is subject to a set of planned 
manufacturing processes defined by corresponding process parameters. 
When executed, each of these manufacturing processes and their out
comes inevitably deviate from the planned tasks in terms of quality (e.g., 
surface roughness, shape accuracy), processing time, and other pro
cessing characteristics [1]. These deviations can be within or outside of a 
specified acceptable tolerance. The goal of every manufacturing system 
is to avoid parts and processes outside of this acceptable tolerance range 
[2]. Process deviations stem from a diversity of culprits, such as mal
functioning machinery, operator errors or lack of training, unsuitable 
condition of equipment (e.g., tool wear), a variety of environmental 
factors, or normal statistical variances within the process operation [3]. 
Companies depend on reliable process outcomes that correspond with 

the process plan with regard to quality, yield, and time etc. to be suc
cessful on the marketplace. The Industry 4.0 paradigm highlights the 
objective of producing small batch sizes down to batch-size-1 with a 
similar efficiency and effectiveness as a highly optimized large batch 
production in smart manufacturing systems (SMS) [4–6]. 

At the same time, an increasing number of products today include 
some form of sensor system and connectivity to interact and commu
nicate with their surroundings and users. These so-called smart products 
enable not only the provisioning of advanced services, they also collect 
massive amounts of data along their lifecycle. This data can include a 
variety of instances, from location-based data to high-fidelity sensor 
readings. Based on the data and its availability, new insights, for 
example regarding the actual, item-specific use of the product, the user 
preference and behavior, and additional insight can be derived through 
data-driven analytics. 
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Most smart products with embedded intelligence on the item itself 
are utilized during their usage phase to provide the basis for advanced 
services and/or product service systems (PSS) [7,8,9]. Following the 
common three-phase product lifecycle model [10,11], the usage phase is 
considered the middle of life (MOL) of the product lifecycle, while 
design, manufacturing, and distribution are referred to as the beginning 
of life (BOL) phase. All activities around recycling, remanufacturing and 
disposal are part of the end of life (EOL) phase according to this 
depiction. Whereas smart products are common during the MOL phase, 
their utilization during the BOL is limited. During the BOL, SMS enable a 
variety of data-driven applications and services, however, the data 
collection and connectivity is focussed on machine tools and other 
sensor systems outside of the smart product itself. Therefore, today the 
application domain of smart manufacturing is predominately focussed 
on the BOL while smart products are focussed on MOL applications. 
These traditional focus areas of smart manufacturing and smart products 
along the lifecycle are depicted in Fig. 1. 

When we now consider that smart products are in principle capable 
of sensing and communicating with their environment, the question 
arises why they are not deployed during the other lifecycle phases. 
During the EOL phase, a common argument is that the smart product is 
often not functional any longer as one of the primary reasons for disposal 
in the first place as well as the large variety and lack of standardization 
of EOL processes. In this paper, the EOL is not in the focus and there 
might very well be valuable opportunities to extend the smart products 
paradigm to the EOL that deserve closer attention in future work. For the 
BOL, smart manufacturing focusses on augmenting and supporting the 
data-driven optimization of the manufacturing processes. At one point 
during these processes, a product becomes ‘smart’. This happens theo
retically when the sensor systems, computing capabilities, and connec
tivity - the key requirements of a smart product to interact with its 
environment – are activated. Once the smart product is active, it theo
retically can augment the SMS by providing additional data and context 
for, e.g., better predictions. 

Fig. 2 shows the proposed expansion of the smart products paradigm 
from the MOL to the BOL. This expands the traditional focal area 
depicted Fig. 1 towards overlapping with smart manufacturing during 
the BOL phase of the product lifecycle. The overlap is due to the utili
zation of the smart products’ capability to sense and communicate in the 
early stage of the BOL while the SMS itself provides process and product 
data as well. The principle idea is that leveraging the smart products’ 
functionality during manufacturing leads to an augmentation and value- 
added combination of information that provides better insights and 
richer data overall. 

Our research approach aims to address this rather conceptual idea in 
two ways: We will first present a theoretical perspective on the technical 
(restrictions, functionality) and economic feasibility (value, benefits). In 
the second step, we will present a prototypical use case we conducted to 
evaluate the technical feasibility in a lab environment. These steps relate 
to two research questions. 

The first research question addresses the overall feasibility: 
R1: Is the early state utilization of smart product data feasible? 
R1a: Is the early state utilization of smart product data economically 

feasible? 
R1b: Is the early state utilization of smart product data technically 

feasible? 
The second research question investigates the demonstration and 

application of an early state smart product utilization: 
R2: Can the benefit of such an application be validated by 

demonstration? 
The key contribution of our research is to critically assess the current 

MOL-only focus of smart products with embedded intelligence on the 
item itself (other than aggregated on containers), change this percep
tion, and expand the smart product paradigm to the earlier phases of the 
product life cycle (manufacturing phase / BOL), thus enabling smart 
products to actively enhance, augment, and improve the manufacturing 
CPS processes themselves. This will further push the boundaries towards 
self-organizing, autonomous, and decentralized control of complex 
manufacturing CPS and their components [12–16] 

The paper is structured as follows: in section 2 we provide a brief 
overview of the relevant state of the art before discussing the feasibility 
of the smart products’ paradigm towards the BOL phase on a theoretical 
level. Section 4 augments the theoretical contribution with a case study, 
thus addressing R1. In section 5 we discuss the implications with regard 
to manufacturing organization and processes as well as selected in
dustries (addressing R2) before concluding the paper with a reflection 
and outlook on future research. 

2. State of the art 

The manufacturing industry is currently going through a digital 
transformation that is commonly referred to as the fourth industrial 
revolution (‘Industry 4.0′) or smart manufacturing paradigm. Merging 
the virtual, or cyber, with the physical world is at the core of this 
transformation [17–20,21]. In the following, we will present a concise 
state of the art of the underlying principles relevant for this paper 
through a manufacturing lens: smart manufacturing; data analytics; 
smart products; sensor integration; and 3D printing of mass-customized 
and geometrically complex structures with integrated electronics. 

2.1. Smart manufacturing 

Smart manufacturing [22] describes “a data intensive application of 
information technology at the shop floor level and above to enable 
intelligent, efficient and responsive operations” [23,24], while also 
highlighting the data and technology focus [25]. Smart manufacturing 
emphasizes the importance of including human ingenuity and the cre
ation of manufacturing knowledge from data. In essence, SMS resemble 
complex CPS [26] that integrate operational technology (OT) and in
formation technology (IT) to improve manufacturing operations 
through sensor systems and advanced data analytics. SMS can be un
derstood as complex systems of systems, in our case, integrating a smart 
product CPS in the governing smart manufacturing CPS. 

On the manufacturing shopfloor and along the value chain there are 
many IT-systems that collect, analyze, distribute, and manage 
manufacturing and product related data. Such systems include but are 
not limited to manufacturing execution systems (MES), quality man
agement systems (QMS), enterprise resource planning systems (ERP) as 
well as many dedicated tools such as simulation and optimization soft
ware. Cloud based platforms such as are increasingly deployed to 
manage the increasing volume, veracity, and variety of data, provide 
scalability, as well as user-friendly connectivity and access to advanced 
tools [27]. 

Fig. 1. Product Lifecycle Phases and traditional focus areas of Smart Manufacturing and Smart Products.  

J. Lenz et al.                                                                                                                                                                                                                                     



Journal of Manufacturing Systems 57 (2020) 274–286

276

2.2. Data analytics 

SMS provide access to large amounts of product, environmental, and 
manufacturing process data. As a logical consequence of the availability 
of this increasing amount of data, a key component of today’s SMS to 
leverage this emerging resource is data analytics [25,28–30]. This 
expansive data poses the next challenge - how do we derive 
value-adding and actionable insights from these large and continuously 
growing amounts of data? Here machine learning, or data-driven ana
lytics, are seen as a promising venue besides the established 
physics-based models [31]. Data-driven analytics in manufacturing 
receive significant attention from academia [22,32,33], funding 
agencies (e.g., NSF, NIST, DoD, & DoE in the US), and industry alike 
[34–36]. Data analytics was first used in manufacturing in the early 
1990s [37–39]. 

Since those early days, several significant advances have been re
ported in data analytics [40,41], data mining [33,38,42,43], machine 
learning [3,35,44,45], and industrial applications [40] just to name a 
few. Data analytics in manufacturing have a significant advantage over 
many other domains - expert teachers are readily available in many 
cases that enable powerful supervised learning to be applied in order to 
find patterns within the wealth of data that are not perceivable by 
humans [37]. 

An application area that has seen significant advances through data- 
driven analytical methods is quality assurance (QA) [46]. A data-rich 
picture of the manufacturing operations provided by sensors in a SMS 
enable prediction, monitoring, and control of product and process 
quality in (near-)real-time [47]. The proposed paradigm shift aims to 
include additional data points collected by the smart product itself and 
thus enable a richer data picture and in consequence the ability to 
improve data-driven QA applications even further, improving the 
timeliness and preventing the release of low quality parts to customers. 

2.3. Smart products 

Smart products, also known as intelligent products, are argued to be a 
key technology of industry 4.0 [48,49]. There are several definitions of 
smart products available (see [7] for more an overview). A compre
hensive perspective that is widely used by [50] defines a smart products 
as “a physical and information based representation of an item […] which 
possesses a unique identification, is capable of communicating effectively with 
its environment, can retain or store data about itself, deploys a language to 
display its features, production requirements, etc., and is capable of partici
pating in or making decisions relevant to its own destiny”. Smart products, 
their characteristics, and their capabilities can vary significantly. [51] 
proposed a classification model for smart products, later extended by [7] 
(see Table 1). 

Now when we consider the opportunity from a manufacturing- 
centred perspective, smart products are often understood as intelligent 
and connected machine tools [52] and/or intelligent containers [51] for 
tracking and tracing of parts and in a logistics scenario where the ag
gregation level of intelligence is on the container (e.g., pallet). In the 
latter example, common technologies that are employed in industry 
today include radio frequency identification (RFID) tags [53,54], barc
odes and/or data matrix codes [55], as well as distinct variants 

combining active triangulation augmented with geolocation [56]. 

2.4. 3D printing of electronics 

Embedding electronics in 3D printed structures is a vibrant research 
topic and additive manufacturing has emerged as a promising technol
ogy in this sense, as additive manufacturing (AM) provides access to 
intermediate layers during the layer-by-layer fabrication process (some 
new AM processes feature out of plane fabrication, which still aligns 
with the requirements put forth here). For over a decade, the integration 
of electronic components, batteries, antennas and actuation within these 
complex forms has been successfully demonstrated [57–66]. Geometries 
can now include conductive traces to provide electrical interconnection 
between embedded components by micro-dispensing and aerosol jetting 
of conductive inks. Early example structures are shown in Fig. 3 and an 
overview of the capability of distinct AM processes to manufacture in
tegrated electronics is illustrated in the following (see Table 2). The 
current effort is attempting to leverage the functionality that can now be 
introduced early during manufacturing to collect self-reporting process 
data to support the qualification / certification of the part. However, 3D 
printing sensor systems including their power supply remains an active 
research topic and needs to develop further to reach the maturity 
required for an industrial application of smart products during the BOL 
as proposed in this work. 

Vat photopolymerization (VPP) is a high-resolution photocurable 
polymer process which fabricates durable and deformable materials. 
The feedstock materials available from Carbon, FormLabs, and 3D Sys
tems now allow for assembling and fusing of multiple printed sub
components during a final thermal ultraviolet (UV) curing step. This 
approach enables a novel construction paradigm in which embedded 
components can be populated on the superficial surfaces of the com
ponents prior to mating and assembly with a mortise-and-tenon polymer 
welding methodology. The fusing of structures with UV curing is the 
linchpin of the proposed idea: multiple high-resolution polymer sub
strates can be (1) fabricated, (2) robotically populated with electronics, 
(3) connected electrically by printed conductive inks, and then finally 
(4) consolidated together into a single, complex, multi-layered structure 
with fully embedded electronics. During the latter stages of the proposed 
fabrication paradigm, sensors and electronics can be not only integrated, 
but also activated in order to improve the monitoring of manufacturing 
to optimize the process and potentially qualify the structure. Data 
collected internal to the structure during the “birth” of the product can 
be archived in the digital twin for the specific part to be referenced 

Fig. 2. Product lifecycle phases and proposed overlapping focus areas of Smart Manufacturing and Smart Products.  

Table 1 
Classification model for smart products (based on [35,37]).  

Location of Intelligence Aggregation level of 
Intelligence 

Level of Intelligence  

1 Intelligence through 
network  

2 Intelligence at object  

1 Intelligent container  
2 Intelligent item  

1 Information 
handling  

2 Problem 
notification  

3 Decision making  
4 (Pro-)active / 

social  
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throughout the full life cycle. 
Table 2 shows a comparison of processes in the context of 3D printed 

electronics – highlighting the selected VPP for this project versus ther
moplastic extrusion (TE, often referred to as fused filament fabrication 
(FFF)), selective laser sintering (SLS), material jetting (MJ), sheet 
lamination, and direct energy deposition of ceramics. By integrating 
intelligence and sensing capabilities into structures, next generation 
products can now be fabricated with the freedom and mass custom
ization of additive manufacturing. However, this new data acquisition 
paradigm can be leveraged during manufacturing to inform the subse
quent manufacturing processes and to provide information in order to 
support qualification of a structure once completely fabricated. 

2.5. Closed-loop PLM 

Product lifecycle management (PLM) manages all product related 
information during the whole product lifecycle. A closed-loop PLM 
system enables all stakeholders during the lifecycle of a product to track, 
manage, and control product information [67]. A basic system archi
tecture for closed-loop PLM consists of communication channels with 
the product during its operation and a platform [10]. Examples are one 
of a kind products and investment heavy assets [68,69]. Furthermore, 
the closed loop helps accessing the servitization potential of products 
[9]. 

Asset Llifecycle management (ALM) is a related area with the 
objective to optimize the value and efficiency of an asset, often capital 
equipment, over its lifecycle. In recent years, along the whole 
manufacturing industry, ALM is transforming towards a more digital 
and data-driven model of operation. Recent progress includes the 
exploration of sensor-data fueled digital twins for ALM [70], the appli
cation of ontologies in ALM [71], and total cost of ownership models for 
ALM [72]. Sensorized assets within the ALM perspective constitute 
smart products themselves. However, while their MOL phase is on the 
manufacturing shopfloor – this is as part of the SMS as production 
equipment, not during their own manufacturing / BOL [70]. Thus ALM 
aligns with the current perspective of both smart products being pre
dominantly used during their MOL, and smart manufacturing focussed 
on the BOL. 

3. Feasibility of smart products’ applications in manufacturing 

Feasibility is understood as the possibility that an undertaking can be 
achieved or is reasonable. In the context of early state utilization of 
smart products’ data the feasibility is a measure of the technical and 
economic viability. This section is theoretical in nature and intends to 
provide a perspective on general measures and issues that need to be 
considered when it comes to extending the smart product paradigm to 
the BOL. It is not intended to provide detailed technical details on data 
models, connectivity, and other important aspects of the 
implementation. 

Data collection can be improved by introducing smart products 
seamlessly collecting in-situ data throughout the manufacturing process 
and communicating this data, and thus accurate state of the product in 
real-time, in order to continuously update the process plan. Smart 
products are context- and location-aware by recognizing and processing 
their situation and environment independently of the process parame
ters and machine tools used [7,50,73]. With proactive and network 
capabilities, these products can collect sensor data in an unprecedented 
manner and communicate the data to the surrounding and controlling 
smart manufacturing system. 

3.1. Technical feasibility 

We define the technical feasibility as sufficiently achieved when the 
sensor functionality surpasses the process restrictions. This condition is 
only valid for a single product and changes with every process step of the 
manufacturing chain. 

Fig. 4 shows the progression of technical feasibility with an 
increasing number of processes. The initial process is essentially the 
processing of the raw materials and with increasing succession of pro
cesses altering the material and state as well as adding parts to the un
finished product throughout the manufacturing process. Fig. 4 (left) 
shows two exemplary products ‘Product_1′ and ‘Product_2′. The prod
ucts start initially with high process restrictions, which may hinder a 
smart product utilization during the alteration of the unfinished prod
uct. For examples and details on process restriction see section 3.1.1. An 
opposite development can be observed for the sensor functionality (see 
section 3.1.2.). Here the initial value is zero. Then step-by-step 

Fig. 3. Examples of 3D printed electronics: a cylindrical magnetometer (left) and a printed pill with an unpackaged silicon microcontroller and passive compo
nents (right). 

Table 2 
Qualitative comparison of competing AM technologies for 3D printed electronics.  

System Material Options Surface Finish Build Volume Production Speed System Expense Material Expense Over Mold 

Thermoplastic Extrusion o − + o + + o 
Selective Laser Sintering o o + o − o o 
Material Jetting − + + + − o −

Vat Photopolymerization + + o + o + +

Sheet Lamination + o + + − + +

Directed Energy Deposition (Ceramics) + + − − − − −
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functionalities are added and later activated. Fig. 4 (right) shows a 
generalized view of the behavioral averaging of this relationship that is 
valid for all products ranging from a job shop-type process chain to more 
complex process chains. 

3.1.1. Process restrictions 
One bounding dimension of the technical feasibility is the process 

restriction. Here a value can be assigned to represent the composite of all 
restrictions hindering the operation of a smart product during the 
manufacturing process for each process. These restrictions are all pro
cess features which are either fundamentally incompatible with the 
operation of a smart product or can damage the computing hardware 
and/or sensors during operation. Categories of restrictions include 
thermal, electrical, chemical, and mechanical. Thermal restrictions are 
excessive process heat required for heat treating or curing of material. 
Electrical restrictions are required to avoid damaging an electronic de
vice (e.g. electrostatic discharge, ESD). Chemical restrictions include the 
use acids for etching processes. 

The fourth category of process restrictions is mechanical. Here the 
applied force loads onto the product exceed operational limits of the 
smart products components. In order to enable feasibility as early as 
possible the restricted processes need to be shifted earlier in the 
manufacturing chain according to the logical bounds of the assembly 
priority chart (precedence graph). Depending on the manufacturing 
processes employed, there might be additional (sub-)categories that 
need to be included that do not fall within the four previously discussed. 

3.1.2. Sensor functionality 
The utility of a smart product is connected to its current functionality 

of interacting with its environment through sensor readings, commu
nication, etc. This functionality is generally enabled only after the pro
cess step when the smart product can be powered on and the embedded 
operating system can be booted to a state at which sensor data can be 
read, processed, and communicated. The minimum prerequisites for this 
early-stage functionality includes the installed logic hardware and 
power supply (internal battery or external). This dimension has a step 
function increase upon activation of the electronic components of the 
smart product. After the initial inception and activation of the func
tionality, the value-added provided by the sensor functionality only 
increases slightly with successive process steps. Examples for an increase 
in functionality after initial activation include the ability to collect 
sensor measurements after activating additional sensor modules. 

This 1/0 type of view on sensor functionality stands true for both 3D 
printing of embedded sensor systems as well as more traditional 
assembled sensor systems. For the latter, the functionality is activated 
only after the power supply is connected (at a minimum). For the 
former, the structure has to be printed and a power supply (either bat
tery or induction etc.) has to be incorporated. Once this basic func
tionality is achieved and the smart product can sense and communicate 
measurements to the environments. The option of adding additional 
modules or printed circuits theoretically exists, but in most cases the 
initial activation will provide all relevant functionality the smart 

product requires or is capable of for the rest of the BOL phase. Here it is 
important to distinguish between some MOL smart products that utilize 
more sophisticated sensor systems in which additional functionality can 
be imposed via software updates. It is expected that initially BOL-type of 
smart products employ more basic sensor systems with limited capa
bility with regards to software-based upgrades. Embedding sensor sys
tems via AM hard wires the circuits and sensors in the structure itself. 
Examples of directly printed smart products exist and a set of AM pro
cesses were identified which are capable to manufacture smart products 
[74]. 

3.2. Economic feasibility 

The economic feasibility in this context is defined with regard to the 
initial implementation compared to economic benefits realized by the 
integration over a to-be-individually-defined period of time (e.g., one 
year). The appropriate time frame depends on a variety of factors such as 
product value, industry, and lead time. The implementation cost is 
further depicted in chapter 3.2.1. and the integration benefits are 
detailed in 3.2.2. 

Fig. 5 shows the economic feasibility for each specific process in the 
manufacturing chain for two exemplary smart products and the gener
alization of this behaviour. Initially, the cost of enabling the sensing and 
computing capabilities are high, due to process restrictions and costly 
redesign to facilitate the smart product capabilities at the early process 
stages. At the same time, the benefits tend to be lower at the early stages 
due to the limited functionality of a smart product at the initial 
manufacturing and assembly steps. After a certain process maturity 
level, the functionality increases to full operational (MOL) capabilities. 
The hypothetical ‘Product_1′ depicted in the Fig. 5 reaches this state at 
the third process stage. At this point, the benefits outweigh the imple
mentation costs – and the economic feasibility is given. In the case of 
hypothetical ‘Product_2′, the point of economic feasible is never reached 
during the manufacturing phase due to the limited benefits of imple
mentation in this case. 

3.2.1. Implementation cost 
The implementation cost is understood as the sum of all or part of the 

actual total costs to implement the measures that result in the smart 
product capabilities for one specific production process in the 
manufacturing chain. This cost depends on the product design and its re- 
design effort to enable smart product capabilities at one specific 
manufacturing process. Earlier implementation has higher imple
mentation cost due to all the consideration of the succeeding 
manufacturing steps. Certain product designs only allow a smart product 
implementation at a late stage in the process chain, where the majority 
of the product is already assembled. The implementation of smart 
product capabilities in an early stage of the manufacturing process is 
preferred but design constraints limit the possibility for an early 
implementation. For instance, the frame or body shell of the product has 
to be present in the final form to attach sensing and processing 
components. 

Fig. 4. Technical feasibility on item-level (left) and generalized (right).  
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3.2.2. Integration benefits 
The benefits are derived from the value of the information gathered 

at this process and all succeeding processes in the manufacturing chain. 
As these benefits are not limited to shop floor applications but may 
impact the whole value chain, determining the benefits is a moving 
target and needs to be carefully assessed for each case and revaluated 
regularly with a diverse stakeholder group along the whole digital 
supply network. The benefits increase with each process station due to 
the impact of the gathered information on multiple processes. This 
impact is further detailed in chapter 5. Examples of this value are pro
cess improvements enabled by this information These process im
provements can be energy efficiency, increased uptime due to downtime 
tracking, quality improvements, or scrap reduction. 

3.3. Overall smart product feasibility 

The overall feasibility of a smart product application in its 
manufacturing stage is primarily dependent on its technical and eco
nomic feasibility. The technical feasibility, as outlined in section 3.1, is 
present when sensor functionality is active despite present process re
strictions. The economic feasibility, as shown in section 3.2, depend on 
the benefits outweighing the implementation cost. Both conditions must 
be fulfilled for the overall smart product feasibility during its 
manufacturing stage (BOL). This consideration is essential to find the 
manufacturing process in the manufacturing chain where operational 
capacity is desired. 

4. Case study - sensor integrated smart product assembly 

To demonstrate the process monitoring possibilities of a smart 
product during the BOL stage, a prototypical demonstration was 
developed and fabricated. The specific goal is to emphasize the feasi
bility of a smart product monitoring application in its own 
manufacturing stage. The case study consisted of three main stages: data 
collection, data pre-processing, and data analytics. In the following, 
first, the hardware setup is introduced, then the collected data is visu
alized and analyzed. 

4.1. Smart product 

The smart product used in this case study resembles an additively 
manufactured mock-up of a cell phone case with battery and integrated 
sensor system. We chose a cell phone mock-up because today’s smart 
phones are essentially highly-capable smart products that include a 
variety of sensors, communication capabilities, and processing power. In 
this case, the sensor unit described below is similar to sensors that we 
can find in most current smart phones. Therefore, his prototypical case 
study resembles the ‘real world’ on a principle level. A current smart 
phone – our smart product - is manufactured and assembled, and uses its 
own sensors that are later utilized during its MOL to collect data already 
during its BOL. The additive manufacturing process used to create the 
prototype smart product for the case study was stereolithography (SL). 
Fig. 6 shows both the original, non-sensorized part (Fig.6 a)) produced 
on the testbed and the newly designed smart product with the integrate 

Fig. 5. Economic feasibility on item-level (left) and generalized (right).  

Fig. 6. Original Product (a) left), 3D printed Smart Product with Integrated Sensor System (b) right).  
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sensor unit (Fig. 6 b)). 
The sensor system consists of an inertial measurement unit (IMU) 

with a three-axis gyroscope accelerometer, a geomagnetic sensor and an 
environment sensor unit. Specifically, the sensor bundle used the sensor 
components BMI160 (inertial sensor-gyroscope), BMM150 (geomag
netic sensor), and BME280 (environmental sensor). This low power 
module is combined with an ARM processor and a Bluetooth wireless 
radio in a DA14583 IoT sensor by Dialog Semiconductor printed circuit 
board (18 mm x 18 mm x 8 mm). These sensors are common in smart 
product industry applications and offer the multifunctionality necessary 
for sensing scenarios in the BOL stage - not just the assumed MOL during 
the smart product operation. 

4.2. Manufacturing system test bed 

The manufacturing system test bed used is a state of the art Festo
Didactics cyber-physical lab (CPlab) with eight modular manufacturing 
processes, fully connected manufacturing via an automated conveying 
belt system. The stations include for instance a drilling process, heat 
treatment process, and muscle press process. Fig. 7 a) shows the heat 
treatment process of the Festo SMS. This process is equipped with a 
heating element with different parameter settings. The parameter set
tings define the processing time, wattage, and temperature setpoint to 
heat treat products. 

Fig. 7 b) illustrates a flipping process which takes a part from the 
carrier, elevates the product with a gripper, rotates it by 180 degrees and 
finally places it back on the carrier tray. Fig. 7 c) shows the conveyor belt 
connecting the process stations in a right-angle turn. 

4.3. Data collection and pre-processing 

The in-situ data was retrieved from the smart product to the planning 
system via Bluetooth and the sensor readings were written as entries in a 
continuous log. The data set for this study overall was 21 Megabyte of 
raw data retrieved during an operation time of 50 min adding up to a 
total of 265,500 sensor reading entries. 

Table 3 shows the raw data with one sample for each entry for each 
type of recorded physical dimension. Data pre-processing consisted of 
splitting the data set into the various sensor type data subsets and 
visualizing the raw data. 

4.4. Data analytics and results 

Data analytics focusses on the gyroscope, the accelerometer and the 
temperature sensor data. The analytics goal was to reliably identify 
characteristics per process with patterns found and mathematically 
described by sensor readings (Table 4). 

4.4.1. Gyroscope 
The BMI160 is a microelectromechanical systems (MEMS) with a 

built-in gyroscope. The output sample collecting interval was 100 ms. 
This time series data describes the rate change in orientation in degrees 
per second. This motion called angular velocity ω is the rate of change of 
the net angular displacement called the turn angle φ. The obtained value 
by the sensor is the current angular velocity, which is defined as the turn 
angle over time, see Equation 1: 

ω = Δφ/Δt 

The exemplary analytical case of the smart product laying on the 
carrier tray propelled by the conveyor belt can be seen as a 2-dimen
sional problem. Here the angular velocity increases and subsequently 
decreases during the directional change of the overall turn angle φₓ. This 
orientational change covering the timespan from the initial state at t0 to 
the resulting state at t1 can be broken down into incremental changes 
between two timestamps with the angular velocity ωxi of the current 
timestamp ti, see Equation 2: 

φₓ =
∫ t1

t0
ωₓ (t) dt =

∑t1

ti=t0

ωxiΔt 

In this study five turning events have been analyzed. Fig. 8 shows the 
trendlines of the angular velocity during the right angular turn (depicted 
in Fig. 7 c)) for these five events. 

Fig. 7. a) Heat Treatment Process; b) Flipping Process; c) Right Angle Turn.  

Table 3 
Sample Entries in the Data Set.  

Timestamp Type Value 

2019/02/14 10:31:36.130 PRS 97751.00 Pa 
2019/02/14 10:31:36.132 HMD 19.97 % 
2019/02/14 10:31:36.133 TMP 25.55 C 
2019/02/14 10:31:36.243 MAG 416.11 u T -79.03 u T -168.47uT 
2019/02/14 10:31:36.345 ACC − 0.17 g 0.05 g -0.98g 
2019/02/14 10:31:36.351 GYR − 0.06deg 0.02deg -0.08deg  

Table 4 
Turning Events.  

Event Color 
Scheme 

Duration 
in sec 

Sensor 
Readings 

Peak ω Avg. ω Turn 
Angle φ 

No. 1 Blue 3.97 41 − 8,55◦/ 
s 

− 2.2◦/s − 90.25◦

No. 2 Green 4.1 44 − 8.38◦/ 
s 

− 2.11◦/ 
s 

− 90,09◦

No. 3 Black 3.85 39 − 8.42◦/ 
s 

− 2.33◦/ 
s 

− 90.15◦

No. 4 Red 3.89 40 − 7.79◦/ 
s 

− 2.28◦/ 
s 

− 87.32◦

No. 5 Cyan 3.71 37 − 9.06◦/ 
s 

− 2,45◦/ 
s 

− 89.68◦

Fig. 8. Recorded Gyroscope Time Series of 90 Degrees Turn.  
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The trend lines show similarities in the events. These similarities are 
evaluated for the duration of the event, the number of sensor readings 
during the event, the peak angular velocity, the average angular velocity 
and the turn angle calculated according to Equation 2. The color scheme 
mentioned in the Table 4 refers to the color in Fig. 8. 

4.4.2. Acceleration 
The 3-axis acceleration readings were acquired via the same IMU, the 

BMI160, as the gyroscope readings with an interval of 100 ms. The 
proper acceleration measured by the accelerometers gives the acceler
ation relative to a free-fall. This can be helpful to differentiate between a 
fixed position within the process station, the movements on the 
conveyor belt and the overall orientation of the smart product. 

The graph in Fig. 9 plots the recorded acceleration forces acting on 
the part as a time lapse during the flipping operation as depicted in Fig. 7 
b). The initial reading shows the g-force exerted on the part before the 
process commences. Once the process is initiated, we can see the forces 
‘switching’ orientation, representing the 180 degrees rotation of the 
smart products during this operation reflected in the accelerometer 
reading. 

4.4.3. Temperature 
The temperature acquired via the environmental sensor module 

BME280 was captured with an interval of 0.5 sensor readings per sec
onds. The temperature profiles recorded during the case study are 
depicted in Fig. 10 and were recorded during the heating chamber 
process shown in Fig. 7 a). 

The reading shows a near linear temperature increase during the 
heat treatment process. The process characteristic of the constant input 
of energy results in a constant heating rate mk. This is defined as the rate 
during the initial state at t0 to the resulting state at t1 of the event, as 
illustrated in Equation 3: 

m1 < f ’(t) < m2 for t0 < t < t1 

The events had a duration of 160 s which translated to 340 data 
points captured. The first event showed a slope of 0.0153 degrees per 
second with a root mean square error (RMSE) of 0.0259, the second 
event a slope of 0.01573 degrees per second with a RMSE of 0.05. After 
the temperature peak is reached the carrier remains in the heating 
chamber with the heating unit switched off. This can be seen in the 
graph with a linear reduction in temperature. Once the carrier starts 
moving again and passes onto the next manufacturing process, a 

negative exponential behaviour can be observed. This observed data 
picture matches the expectation based on established heat transfer 
models. The pattern in this case is very distinct and clearly visible based 
on one defining feature (temperature over time). 

4.5. Use case discussion & limitations 

The prototypical use case tests the very basic potential to utilize a 
smart product to capture data that can be used for value-adding insights 
in a manufacturing process. In this scenario a smart product with a 
sensor system that is capable of collecting a variety of sensor data and 
communicating it wirelessly, phased the smart product in the testbed’s 
eight stage manufacturing process, and analyzed the data collected for 
the potential to identify clearly distinct manufacturing processes within 
the process chain. 

For this study the gyroscope, accelerometer and environment sensors 
were used to showcase this idea. Applying sophisticated analytics 
methods for IMU data utilizing the geomagnetic sensor and sensor fusion 
methods more accurate results can be achieved. 

We were able to clearly distinguish two manufacturing processes and 
the orientation on the conveyor belt solely based on the data collected 
by the smart product. The data shows clear events that exemplify unique 
process fingerprints. These process fingerprint models provide a variety 
of opportunities for optimizing manufacturing processes, including a 
more accurate, real-time updating scheduling and in-situ tracking and 
quality control. The prototypical case study had the objective to provide 
a proof of concept as a basic justification of the argument for an 
extension of the smart product paradigm towards the BOL. The proto
typical implementation is at the same time also a clear limitation of the 
presented work 

In order to provide real value to manufacturing, these ‘process fin
gerprints’ need to be confirmed in various scenarios and modelled across 
multiple products/parts based on unique features. In this case, we used 
several instances of the same process chain for one smart product. 
Ideally the event detection can then be run on the edge to increase the 
reactivity of the system. However, this involves substantial develop
ment, data collection, and modelling efforts. Nevertheless, the proto
typical case study provides a basis and justification to engage in this type 
of future research. It is essential to initially carefully assess and select 
parts/products that profit the most from a richer data picture during the 
BOL. In the following, we present a discussion on the potential impact of 
the paradigm shift within selected industries and applications scenarios. Fig. 9. Recorded Acceleration Time Series showing the Flipping Process.  

Fig. 10. Recorded Temperature Time Series.  
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5. Discussion and impact of smart product paradigm shift 

This paper describes the vision of using smart product in SMS sup
ported by a prototypical implementation illustrating the general feasi
bility. However, the proposed paradigm shift has yet to happen. In the 
following, we will generalize the discussion and present selected sce
narios where the vision can be most impactful and value-adding. 

5.1. Impact on manufacturing operations 

Manufacturing operations management aims at optimizing opera
tional efficiency of the SMS. The majority of improvement and optimi
zation tools and efforts are data-driven and depend on high quality, high 
fidelity, and (near) real-time data. One area exemplifying the opera
tional tasks is scheduling. Scheduling is key to juggle machine tool 
utilization, throughput, and several other parameters of a 
manufacturing system. Many scheduling tools are based on simulations 
that utilize either standardized time blocks (e.g., drill hole = 5 s) or 
accumulated historic data [75]. Either way, this often only allows us to 
achieve a certain accuracy due to the inherent complexity of small batch 
production and individual specifications and unique performance (e.g., 
acceleration) of machine tools (even of the same type and model). 

Incorporating a smart product in the process that is capable of 
providing real time data regarding its state, progress, and current 
whereabouts in the value chain through accurate ‘process fingerprint’ 
models of each individual manufacturing process and the connectivity 
and data provided by the sensor system. This enables automated 
tracking of the smart products’ state and the creation of a seamless, item- 
level manufacturing history (batch-size-1). In turn this increases the 
granularity of data and information available. In order to fully leverage 
all of the benefits, the sensor-read data can be augmented with infor
mation about the process plan (schedule) from the MES. This enables 
virtual quality gates and feedback on the elapsed processing, idle, and 
transportation time between two or more manufacturing processes 
enabling more precise and accurate scheduling and predictions. The 
SMS consequently can conduct a real time calculation of the actual 
utilization of each process station in-situ, and ultimately an online 
detection of the current real time value stream mapping. Here the 
detection, quantification, and visualization of bottlenecks of the SMS 
can be used to improve the routing and scheduling of smart products 
which are about to be manufactured - and in the end the overall 
manufacturing system’s outcome (e.g., throughput, machine utilization) 
can be improved. 

5.2. Impact on manufacturing processes 

On the manufacturing process side, the integrated sensor system of 
the smart product enables in situ data collection while it is being 
manipulated by a machine tool and/or process. This allows us to analyze 
the incoming smart product data with regard to the quality outcomes of 
each manufacturing process in virtually quality gates. Physical quality 
gates in manufacturing range from fully automated [76] to requiring 
manual intervention [77]. Their accuracy varies depending on a variety 
of factors, and many do not provide a 100 % quality inspection [78]. 
Quality checks are necessary due to the deviations of executed (as-is 
values) from the planned process parameters (set values) [12]. They 
deviate due to the condition and state of the manufacturing systems and 
distributions in dimensions and properties of various interacting com
ponents. The quality prediction model based on the data provided in situ 
by the smart product is expected to predict outcomes with regard to the 
actual achieved requirements (quality features). Machine learning 
clustering algorithms can be employed to distinguish between good and 
bad (scrap) parts at critical points of the process [47]. The richer the 
data picture, the better the prediction [3]. Thus when we merge the 
continuously collected and analyzed data from the smart product fused 
with the CPS provided MES objectives. This resembles an automated 

advanced in-situ process monitoring. 
Building on the data collected and analyzed by the smart product, 

these insights from the process alterations (n) can be used to trigger 
alterations of the manufacturing process parameter settings of the next 
processes (n+1, n+2, …) by which the product will be manipulated. The 
so-called self-x capabilities [79] are autonomous measures with regard 
to decisions whether or not certain actions require intervention to 
realize a better outcome than the current scenario. Examples are elec
trical, pneumatic, and time related settings. For instance, the heat 
treatment process can be extended and set to a higher temperature if 
required to achieve the manufacturing objectives. Such self-correcting 
control fed by insights from product and process data offers enhanced 
capabilities over process data-based insights alone, with large variations 
depending on the different manufacturing processes themselves [80]. 

5.3. Impact on selected industries 

In this section we discuss selected scenarios where the proposed 
extension of the smart product paradigm delivers added value. The se
lection emphasizes diversity of scenarios across industries (e.g., aero
space, medical equipment) and applications (e.g., cybersecurity, 
tracking). Table 5 provides an overview of the use cases and the po
tential impact of using smart products during the BOL in these scenarios. 
Afterwards, each use case is presented in more detail throughout the 
remainder of this section. 

5.3.1. Aircraft manufacturing 
Aircraft manufacturing represents a high complexity product (or 

system) and manufacturing process. Additionally, the aerospace in
dustry is one of the most regulated today with safety regulations and 
mandatory tracking and tracing, certifications, and quality monitoring 
in place. At the same time, aircraft are highly sensorized systems once 
assembled and in service. Jet engines are a prime example for smart 
products that are often used as a prime example case for digital twins 
[81]. 

The tight tolerances and complex manufacturing processes to 
manufacturing aircraft components including jet engines and the regu
lations and certifications required (e.g., FAA [82]) provide several areas 
where an integrated sensor system could provide value during the BOL, 
namely during the assembly process. Two specific applications are the 
seamless tracking of certified parts along the supply network to avoid 
accidental mix ups and counterfeits. The second application is a more 
precise monitoring of the production process itself using the included 

Table 5 
Overview of possible use cases.  

Industry/product Potential 
application 

Key objective Limitations 

Aircraft 
Manufacturing 
(Sec. 5.3.1) 

Tracing of 
critical parts 

Provide visibility of 
supply chain, and 
protection against 
counterfeit parts 

Compliance with 
regulations and 
certifications of 
aircraft parts 

Composites 
Manufacturing 
(Sec. 5.3.2) 

Monitoring of 
layup process 
quality 

Provide data on key 
quality parameters 

Integrated sensor 
system may impact 
structural integrity 
of manufactured 
parts 

Safety equipment 
(Sec. 5.3.3) 

Sensorized 
motorcycle 
helmet 

Track possible 
quality issues, e.g., 
drops, during BOL 

Timing of sensor 
system activation 
and connectivity 
during 
transportation 

Sports equipment 
(Sec. 5.3.4) 

Sensorized 
golf club 

Track process 
parameters to 
optimize overall 
performance of club 
(e.g., material 
composition) 

How to power 
sensors system to 
collect relevant 
process data, e.g., 
heat treatment  
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sensors. For example, the blades of the jet engine are an advanced 
product that is manufactured using several layers of materials sand
wiched together using a delicate heating profile and high pressure. An 
internal sensor monitoring the temperature curve could provide addi
tional insights and reduce quality issues and scarp. Similarly, the as
sembly process of the fuselage is very heavy on riveting. This can be used 
as triggers to initiate assembly prework, something that is very common 
on the assembly floor in aircraft industries. 

The potential value in this case is promising, however, the barriers 
for implementation in live production are substantial. The detailed 
certification process, while a reason for integrated sensors, is also a 
hurdle that prevents inclusion of sensors in the components. Another is 
the high temperatures and pressure endured by parts during the process 
that are problematic. 

5.3.2. Composites manufacturing 
In the context of composites manufacturing, specifically automated 

fiber placement (AFP), the implementation of digital transformation is a 
necessity. AFP is used for the manufacturing of primary structural parts 
on the Airbus 350 and Boeing 787 aircrafts where over 50 % by weight is 
now made of these composite parts in lieu of the traditional aluminum 
parts. The manufacturing process requires the implementation of four 
principle process parameters: heating, compaction, speed, and tension. 
Most of these process conditions are implemented in an open loop 
manufacturing setup where the output is not verified whether it is 
delivered as intended. Therefore, integrated sensors could provide use
ful data and add value to the manufacturing system, potentially reducing 
quality issues and scarp. Extending the smart product paradigm towards 
the BOL of composite structures is promising and aligns the with 
plethora of work on including integrated sensor systems for structural 
health monitoring in composites during their MOL across industries 
[83–85]. 

Utilizing the sensors during BOL could enable an augmentation of the 
process data collected by the machine tool (AFP equipment) such as 
elongation and/or integrity of fibers during the layup. Ideally it could be 
integrated in the closed loop control currently employed. The closed 
loop heating mechanism controls the output temperature on the sub
strate and ensures the layup window is happening at the material 
optimal temperature [86]. Furthermore, the data from the integrated 
sensor system could enable advanced analysis of the quality of the 
manufacturing layup and assessment of its effect enabling the operator 
to plan and conduct eventual repair [87,88]. 

The AFP process in particular is creating the structure by adding 
material layer by layer, the sensor system must be included during this 
process. Today, there is little research available whether the tempera
tures and pressures allow for an integration of directly functional sen
sors. In a more traditional and established composites manufacturing 
process where the layers of fiber are placed before applying the resin, the 
integration of sensor systems faces less barriers. 

5.3.3. Safety equipment manufacturing (Example: motorcycle helmet) 
Safety equipment has little tolerance for quality problems as the 

consequences of product failure can be catastrophic. An example of 
safety equipment are motorcycle helmets. Today, we find a large vari
ation of motorcycle helmets on the market, influenced on the one hand 
side by laws, policies, and customer preference, and on the other by 
advancing technology, materials, and new safety insights. One of the 
more recent innovations are integrated sensors in motorcycle helmets, e. 
g. IMU sensors similar to the use case presented in section 3 of this paper 
[89,90]. The data collected by this sensor system during the MOL en
ables annotation of video data but also safety aspects such as drops that 
might impact the structural integrity of the helmet. Other future aspects 
of a ‘smart helmet’ are the ability to only start the motorcycle when the 
helmet is correctly donned. 

Sophisticated motorcycle helmets and similarly helmets used in 
football, aviation, military / special forces, bikes, etc. are carefully 

crafted to perform their task of protecting the user during the usage. 
Modern helmets are designed to absorb impact, alleviate forces, and 
reduce trauma just to name a few. The use of additive manufacturing of 
elastomers is allowing for density-varying lattices that can tailor the 
mechanical response of the system. Furthermore, novel sensors can be 
interwoven between the lattice unit cells to provide precise deformation 
sensing, a sensor that may have utility in the context of this smart 
product paradigm [91]. To perform at the edge of what is possible, the 
structure is often sensitive to drops and previous use - including the 
handling during shipping, manufacturing, and other BOL phases. 
Therefore, utilizing the helmet as a smart product during the BOL would 
allow the user to judge the current state of the helmet based on data, not 
only based on trust and the assumption that it was handled with care and 
not, e.g., dropped accidentally when stocking the shelf or moving the 
combat backpack. 

In the case of the helmet, the IMU sensors will provide value after the 
helmet is assembled during the logistics and final inspection. However, 
currently the helmets need to connect via Bluetooth to a mobile phone to 
ensure connectivity. To truly provide seamless tracking and monitoring, 
independent wireless connectivity would have to be built in. The use 
case for such an expensive solution (today) is only valid for high profile 
helmet systems such as NFL players, Navy SEAL operators, or profes
sional race drivers. In the future this case might be valid broadly as it 
delivers a clear value add and can potentially save lives. 

5.3.4. Sports equipment manufacturing (Example: golf club) 
Golf is a $84 billion a year industry [92]. Professional and casual 

players are investing significantly in golf equipment such as high-quality 
golf clubs. Modern golf clubs are high tech products that utilize state of 
the art design, research, and materials such as titanium. In the players’ 
quest to improve their game, they are often obsessed with data and 
analysis to understand their shortcomings and potential to improve. No 
wonder that integrated sensor systems have found their way into the 
sport, and more particularly in the golf clubs themselves to collect a 
myriad of data during the MOL that can be used to analyze and hopefully 
improve the players handicap [93]. 

Smart golf clubs can include a variety of different sensor systems, 
from IMUs to strain gages [93,94]. As mentioned before, golf clubs 
utilize advanced materials and manufacturing processes and can cost 
several thousand dollars. Customers tend to be very involved and 
particular about the expected quality and utilizing the integrated sensor 
system intended for the MOL during the manufacturing phase (BOL) can 
provide additional data to ensure consistent high quality of the delivered 
products and also to reduce the scrap rate impacting the bottom line. 

5.4. Implications and limitations 

Overall, these diverse scenarios show the potential exists with a clear 
value add for expanding the smart products paradigm from the MOL to 
the BOL. This proposed paradigm shift has several implications for ac
ademic research and also mangers interested in the opportunities it 
presents. With regard to academic implications, there are a myriad of 
areas that need further investigation. On the technical side, research in 
sensor integration, sensor technology, and sensor power systems is 
crucial to enable small-scale and rugged sensor systems that can be 
powered during the BOL. Connectivity is another field where research 
needs to be conducted to overcome the barrier of communicating the 
smart products’ data during processing in SMS. On the economic side, 
more research into models and frameworks around the feasibility of 
selected use cases and their business models is required. Both academics 
and managers need to rethink their business models that might need to 
be adopted. For managers interested in this paradigm shift, it is crucial 
to carefully assess whether there is a value proposition of gaining 
additional insights during the BOL for their specific smart product. 
Especially during the beginning, there are probably one very few 
selected use cases that make economic sense. Over time, when the 
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technical barriers have been addressed and the business models are 
developed, more use cases may profit from the development. 

There a several limitations that need to be considered when 
considering the presented research and the paradigm shift overall. 
Regarding the research, the case study did not focus on the early part of 
the manufacturing process. The early processes are generally more 
physically demanding in terms of thermal, mechanical, and chemical 
exposure and thus not as inclined to work with sensors as proposed. 
Furthermore, the case study is set in a lab testbed and not in an industrial 
environment, e.g., the assembly of a real smart phone. Therefore, the 
complexity was reduced with the intention to focus on the general 
feasibility. This needs to be studied further both in terms of the technical 
and economic feasibility. A critical barrier of adoption is the required 
connectivity of a smart product. Traditionally, connectivity is estab
lished once the smart product is activated by the user after purchase. 
This barrier is consistent with most consumer-facing products and can 
potentially be overcome by connecting the smart products to factory 
shop floor Bluetooth gateways to overcome the connectivity issue. 

6. Conclusion & outlook 

Our world is changing rapidly in the wake of the fourth industrial 
revolution. Connectivity, data, and the Internet of Things are every
where, from our homes to our factory floors. Smart-connected products 
with integrated sensors are cheap and omnipresent from shoes to 
watches, from cell phones to modern appliances. The data collected by 
smart-connected products during the usage phase (MOL) offers 
tremendous value to service providers as well as manufacturers to 
improve product design and customization and/or data-driven person
alization. However, these benefits have yet to be fully leveraged. 

Currently, only traditional sensors that are integrated within the 
smart manufacturing system (SMS) such as in machine tools, quality 
monitoring systems, or quality gates are leveraged in the manufacturing 
of smart products during the beginning of life stage (BOL). 

In this paper, we proposed to radically extend the smart product 
concept towards an earlier point in the product life cycle, thus 
leveraging the value-adding in-situ sensing capabilities of the smart 
product to measure preliminary manufacturing data during the BOL. We 
argue that 3D printing can now serve as the foundational process for 
building multi-functional structures as smart products and enable 
functional integrated sensor systems early in the manufacturing process 
chain. The potential value of expanding the manufacturing data 
perspective with real-time, in-situ data collection by the manufactured 
product itself is transformational. Particularly, manufacturing processes 
that depend on high-fidelity process data to achieve the desired outcome 
will tremendously profit from not only additional data points but data 
from within the structure itself - previously impossible without 
destructive evaluation methods. Leveraging 3D printing to directly 
manufacture structures with integrated sensing, unprecedented data can 
now be measured during manufacturing of next generation smart 
products. 

The technical feasibility of this breakthrough innovation depends on 
the product itself and the manufacturing process. However, mapping the 
viability of this approach over a number of processes for several 
different products highlights profound opportunities in the later phases 
of the SMS. Combined with a judgement of the economic benefits, the 
value proposition for a specific smart product and SMS can be 
determined. 

We presented a prototypical feasibility study based in our smart 
manufacturing test bed that illustrates that integrated sensor systems 
can principally provide value adding data directly from the 
manufacturing process. While this study is only a first step towards this 
vision of BOL enabled smart products, we ground our findings in current 
industrial reality by discussing selected scenarios of promising appli
cations (e.g., helmets, jet engines, golf clubs) to better reflect the op
portunities as well as barriers. Substantial work remains and inter- 

disciplinary research is required to tackle this problem and make this 
unconventional transformative vision a reality. 

The presented work has several limitations that need to be consid
ered moving forward. The prototypical application was done in a lab 
testbed and not an industrial manufacturing setting. The challenges with 
respect to noise, connectivity, access, and transparency present addi
tional barriers. Another aspect is data security and, most of all, ROI of 
such a system that will define its applicability. The 3D printed sensor 
systems are technically available, however, the effect of those on 
structural integrity especially on one-of-a-kind products need to be 
considered as well. Another key aspect that requires more analysis when 
smart products become nodes within the SMS is cybersecurity and other 
sensitive areas impacted by this paradigm shift [95]. 
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