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ABSTRACT 

Automated Fiber Placement (AFP) has become a standard manufacturing technique in the 

creation of large scale composite structures due to its high production rates. However, the 

associated rapid layup that accompanies AFP manufacturing has a tendency to induce defects. 

We forward an inspection system that utilizes machine learning (ML) algorithms to locate and 

characterize defects from profilometry scans coupled with a data storage system and a user 

interface (UI) that allows for informed manufacturing. A Keyence LJ-7080 blue light 

profilometer is used for fast 2D height profiling. After scans are collected, they are process by 

ML algorithms, displayed to an operator through the UI, and stored in a database. The overall 

goal of the inspection system is to add an additional tool for AFP manufacturing. Traditional 

AFP inspection is done manually adding to manufacturing time and being subject to inspector 

errors or fatigue. For large parts, the inspection process can be cumbersome. The proposed 

inspection system has the capability of accelerating this process while still keeping a human 

inspector integrated and in control. This allows for the rapid capability of the automated 

inspection software and the robustness of a human checking for defects that the system either 

missed or misclassified. 

 

1. INTRODUCTION 

1.1 Purpose  

The advent and popularization of AFP manufacturing in the aerospace industry has led to large 

jumps in the size and throughput of various composite structures that are realistically possible in 

a traditional manufacturing setting. This increase in the speed of material deposition, however, 

has a number of notable drawbacks. Principally among them, automation with robotic 

components leads inevitably to a lack of control in the quality of what is produced on a system. 

The result is potential for the rapid production of defects in manufacturing and thus a need to 

detect, identify, and characterize defects. A collection of common AFP defects can be found in 

[1]. Traditionally, this has been accomplished through the use of human inspectors, and thus the 

inspection time and quality are subject to human variations. The need for human inspectors also 

placed an additional restraint on the availability of experts needed to accomplish the task. In 

recent years, the concept of automated inspection systems coupled with automated 

manufacturing systems has generated a great deal of interest in the both the academic and 

professional communities. Combined with the advancements in machine learning techniques 

automated inspection has the potential to reduce inspection time and cost and increase 



consistency while having high accuracy. Reliable rapid inspection also allows for an additional 

data source that can be accessed for further study. This enables advances in product lifecycle 

management (PLM), the development of a digital twin, and the post-manufacturing analysis of a 

particular structure [2].  

1.2 Proposed Solution 

In previous work we extensively discuss the architecture of the network used for defect 

recognition, and the process by which the defects are classified [1]. In this publication, we intend 

to outline the most recent additions to the system which now incorporates a UI as well as a 

MySQL database. The paper is going to be divided into the following sections: Section 2 will 

discuss the literature review relevant to inspection and machine learning. Section 3 will describe 

the experimental setup and hardware used. Section 4 will briefly describe the machine learning 

algorithm and defect detection process. Section 5 will detail the UI and database features and 

functionalities. Section 6 will present the most recent results of the system. And finally Section 7 

will offer a conclusion and our plans for future work. 

1.3 Literature Review 

Machine learning in visual inspection tasks has made a steady gain in the literature since the 

popularization of the convolutional neural network (CNN) in [3] for image classification tasks. 

Further developments outlined in [4] pushed some image recognition tasks above human 

performance. Meng et al. [5] utilize CNNs to classify defects in composite materials from 

ultrasonic scanning methods. Kuhl et al. [6] use machine learning techniques to incorporate 

multiple sensor inputs for the identification of defects on composite aerospace structure. 

Benítez et al. [7] outlines the creation of a thermographic inspection system to identify 

defects in composites structures, with defect identification being accomplished through the use 

of both the support vector machine (SVM) described in [8] and radial basis function networks. 

Brüning et al. [9] couples an infrared inspection system mounted on the AFP machine head with 

several process parameters used in manufacturing to utilize machine learning for the 

optimization of the process parameters for AFP.  The use of SVM for the classification of 

porosity, inclusion, and delamination in composite structures through ultrasonics is demonstrated 

in [10]. The use of ML techniques in the evaluation of eddy current data for the classification of 

defects in composite structures was studied in [11]. The authors utilized a number of algorithms 

including a U-BRAIN approach that showed promise. 

The first iteration of our approach was demonstrated in [12]. In the ensuing period, the state 

of AFP defect detection has remained relatively stagnant. Thus, the continued improvement of 

our system represents novelty and scientific worth. The addition of several features to include 

with the ML algorithms, such as an easily interpretable user interface (UI) for operator 

integration and correction and data management and storage through an off-site server, continue 

the development of our concept into a full inspection tool that has yet to be articulated in 

literature to our knowledge. 

2. EXPERIMENTAL PROCESS 

2.1 Data Acquisition 

The collection of data for analysis is done through the Automated Composite Structure 

Inspection System (ACSIS) developed by Ingersoll Machine Tools. The data acquisition is 



accomplished using 4 Keyence LJ-V7080 profilometers mounted to a Kuka KR120 robotic arm 

Figure 1. The profilometers are used to capture a 2D height profile of a surface. This height data 

is then batched and stitched together to create a 3D mapping of a surface.  

 

 
Figure 1: ACSIS in operation  

 

The ACSIS software then translates this height data into a grayscale image that has 

smoothing and contrasting operations performed to provide a clear and interpretable scan of a 

part as is shown in Figure 2, which shows a part of a scanned course. We can see the differences 

in the grayscale indicating the differences in the height profiles. The darker patches indicate a 

lower a dip in the surface while a lighter patch indicates an elevated surface. Through 

differentiating between these dark and light patterns we can distinguish the different defects 

types, and in turn train the FCN. It should be noted that this is a pre-cure system. ACSIS is 

intended for use principally with thermoset carbon tows, though there are some preliminary 

results indicating its ability to capture some dry fiber materials. 

 

 

 
Figure 2: A grayscale image of AFP part from profilometer scan 

After inspection, our defect data is logged on a server constructed from a Raspberry Pi 3b+ 

hosting a MySQL database. The server is linked into the lab network, and thus is platform 

independent and discoverable from any machine on said network. This allows for any potential 



application that wishes to perform analysis from the defect data to be both theoretically possible 

and easily constructed on top of the infrastructure provided.  

2.2 Image Analysis 

2.2.1 Machine Learning Approach 

The ML approach described in this paper is based on the network architecture outlined in 

[13]. The traditional method of object detection, the classification of patches of an image, simply 

does not have high enough fidelity for the post-inspection applications outline previously. Thus, 

rather than patch classification, our approach attempts to assign each individual pixel a defect 

classification. This is accomplished by replacing the standard CNN architecture with all 

convolutional layer, creating what is known as a Fully Convolutional Network (FCN). Thus, the 

ability to have an accurate and detailed representation of a given defect is limited only by the 

resolution of the scanning or imaging system utilized in the data acquisition system. 

Looking to further improve the potential classification accuracy of the system, a FCN 

variant of the ResNet neural network architecture [4] was constructed. ResNet is notable for 

having scored a 3.6% top five error rate for the ILSVRC image recognition competition. The 

network has a total of 15 of the ResNet “skip functions”, with 3 convolutional layers allocated to 

each skip function, bringing the total network size to 45 convolutional layers. Each skip function 

Generate a 

prediction 

Toggle 

between scan 

and prediction 

Change to a 

different set 

of weights 

Display 

Canvas 

Show Defect 

Color Code 

Toggle 

between 

Courses 

Run Integrated 

With ACSIS 

Figure 3: UI Startup window showing the functionalities 



takes the output of a layer and adds it to the input of a layer further on in the network. This 

allows for a network to be built that consists of many layers, but this have a comparatively low 

parameter count. Glorot initialization [14] and convolutional batch normalization were used due 

to their effectiveness in improving the performance of convolutional networks.  

The training was accomplished using an Nvidia Titan Xp GPU due to the ability of a 

capable GPU to rapidly accelerate the training of deep network models such as ours [15], [16]. 

Approximately 500 800x800 pixel scan images were used for the training dataset, with testing 

and validation of datasets of 10 each. In addition, the use of a live system has been tentatively 

examined and preliminary results of such tests are positive.  

 

2.2.2 User Interface 

One of the notable trends in the literature, and what the authors consider a potential reason 

for the general resistance to the implementation of machine learning capabilities in physical 

systems, is a lack of comfort in the interaction with said ML systems. Thus, we have aimed to 

both improve operator relations to our software and alleviate some of the common industry 

concerns over ML applications; namely the lack of control over the output of such a system and 

an inability to correct for errors. The ML inspection system outlined in this paper can be quickly 

understood and potentially corrected from an operator user interface (UI). Thus, an operator can 

react and correct system errors which can be recirculated for retraining of the network. This 

means that the ML algorithms implemented can be gradually and continuously improved through 

use. This directly addresses many of the common grievances against ML. The main features of 

this UI include: 

1. Display of defects with representative scan image 

2. Operator management features and defect trackers 

3. Operator correction capacity for misclassified defects 

4. Capabilities for operator defined defects 

5. Data management feature including export to AFP Defect Database and finite element 

export  

6. Integration with the current IMT ACSIS automated inspection hardware 

 

Figures 3 to 5 display the mentioned functionalities on the UI.  



2.2.3 Data Transfer and Storage 

The potential to incorporate defect information into a number of other fields of analysis and 

to drive further improvement in the AFP manufacturing setting led to the integration of an AFP 

Defect Database that all defect information could be uploaded to. This database was hosted on a 

server linked in to the local network and separate python scripts were created to push and pull 

data from the server. Those scripts were packaged, allowing any additional analysis tool to be 

developed on top of the server system. A Raspberry Pi 3 B+ was used as the hardware basis for 

the server and local database operations were accomplished with a MySQL Database instance on 

the server. The server tracks each part, the corresponding plies on the part, and each defect 

identified on the ply. In addition, there is a separate section of the database responsible for 

tracking additional parameters for later correlation with defect production.  
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Figure 4: Prediction map and defect type color pallet 



The addition of the AFP Defect Database expands the capability of the inspection system by 

allowing for a number of potential analysis applications to run on independent machines in the 

manufacturing environment. These additional applications could provide information that can be 

incorporated into the UI and displayed for the operator. Thus, two way communication of defect 

data and characterization of data through other tools links the inspection system to the rest of the 

manufacturing environment in a manner that enables far more integration than a standalone 

inspection platform. Therefore the AFP Defect Database can become a linchpin of a smart 

manufacturing concept. 
 

3. RESULTS 

Figure 6 displays a number of testing images and their respective predictions. It can be 

observed that the software is capable of identifying the locations and types of defects with a fair 

accuracy. The green color on the prediction maps signify the existence of gaps while orange 

signifies the existence of overlaps.  The UI with functioning inspection capabilities was assessed 

by an inspection system operator and feedback was given to improve the system. We can make a 

few notes as to the effectiveness of the defect detection algorithms.  Firstly, it should be noted 

that any change of material has to potential to affect the end accuracy of our system. 

This means that while there is a potential to do proper identification of dry fiber or 

thermoplastic material, it will often skew results in the detection of smaller defects in the case of 

thermoplastics and the identification of wrinkles and puckers in rough dry fiber. 

It can also be noted that while there are a number of defects that our system can detect with a 

fair degree of accuracy, there a number of classes that are observed a handful of times and thus 

have limited opportunities to train with. In these cases, our detection algorithms are capable of 

indicating that a defect is present, but misclassification is a distinct possibility. 
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Figure 6: Defect prediction maps showing profilometry scans and their respective defects 

4. CONCLUSION 

An ML algorithm based on Fully Convolutional Neural Networks (FCN) that allows for 

pixel-by-pixel classification is used. This permits the software to identify the exact size and 

shape of a defect in addition to its location on the part. The utilization of a UI gives the system 

operator precise control over the inspection process and allows for the possibility to correct 

inaccurate predictions from the ML algorithms. The ability to continually train the FCN from 

these corrections implies continually improving accuracy in the inspection process. A Raspberry 

Pi 3 B+ is used to host a USC AFP Defect Database as a MySQL server that can be easily 

accessed from other software tools. The system’s information availability is ideal for integration 

with rapid analysis tools or machine parameter correlation, moving the system to an Industry 4.0 

concept. In addition, the storage of data means that a better digital twin can be instanced, aiding 

in product lifecycle management (PLM). The ML network was constructed with the use of 

Glorot initialization for 2D convolutions and batch normalization. The network architecture is a 

FCN variant of the ResNet network incorporating skip functions every three layers. In total the 

network is 45 layers deep. An Nvidia Titan Xp graphics card was used to accelerate training and 

improve prediction speed. 

The execution of an AFP inspection system requires more than simply proper identification 

of defects. Rather, the system outline separates itself through both identification and 

presentation. Defect information can be utilized in a constructive manner, and the hesitancy of 

using automated inspection, particularly those consisting of machine learning algorithms, can be 

mitigated. Machine learning can be applied in the context of a tool rather than a proof of concept. 

Integrating an inspection system with other manufacturing analysis tools can spur greater 

efficiency, innovation, and quality. 

There are a number of important notes when creating ML-based systems. It is an absolute 

prerequisite to have a suitable amount of data for input vectors that have a large number of 



features. The data must also have adequate distribution over all of the classes that are to be 

identified. For AFP defects, this implies that the preponderance of gaps and overlaps can pose a 

potential problem for data collection efforts. This can be mitigated through the application of 

data augmentation algorithms. In the system presented in this publication, a sine wave distortion 

was introduced to certain collections of data that were evaluated to be underrepresented in the 

dataset.  

The identification of multiple defects beyond the gap and overlap focus of many of the 

automated inspection systems is a principle priority of the ongoing development of this AFP 

inspection platform. In certain cases of rare defect types, our algorithms are often able to identify 

that a defect is present, but will tend to misclassify the defect type. This is manageable through 

the UI, however it points to the need for a potential standard AFP defect training set in a manner 

similar to the ILSVRC or other image recognition and classification competitions. Concerted 

work to yield above 1000 training images may be the necessary tipping point to push the current 

system into being accurate enough for industrial integration with minimal operator intervention. 

Developing this additional training data will be a focus for the continuing improvement of 

inspection system. A number of additional tasks for future work include: 

 Expanding data management tools 

 Exploration and optimization of profilometery settings 

 Developing network retraining capabilities from operator input  

An exercise in operating the software in a live production environment for an extended period of 

time may yield useful information about the performance and improvement of the system with 

time. Thus, while these results are still squarely under the regime of preliminary, it is expected 

that a full understanding of the system capabilities will follow in the near future. 

Additional area of potential work include the integration of our system with steered tow 

designs. Preliminary investigation indicates that fiber steering produces a number of defects 

including wrinkles [17]. Inspection can also be utilized as an experimental check on any number 

of path planning operations that may contribute to the defect production process [18].  
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