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Introduction

• Automated Fiber Placement is a 

composite manufacturing technique

• Machine advancements are leading to 

manufacturing increasingly complex 

shapes

• The effects of tool geometry are not 

fully understood

• Temperature is a crucial process 

parameter to achieve quality layups



Introduction

• Proper temperatures lead to increased adhesion and higher overall 

part quality

• Temperatures must be high enough to ensure adequate tackiness, but 

not so high that material degradation occurs

• Importance of sufficient temperature is increased when laying up on 

complex tools
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Experimental Setup

• Ingersoll Machine Tools Lynx AFP 

machine

• 3 linear axes (X, Y, Z) and 3 

rotational axes (A1, K, A2)

• Humm3® head attachment for 

heat source

• 8 6.35 mm (0.25 in) tows used     

for each course

• Doubly curved tool

Humm3® crystal
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Experimental Setup

• Doubly curved surface with 

varying curvature in zero 

direction

• Allows for experimentation 

with various curvature 

values on same tool

• Multiple substrate layers 

required due to aluminum 

tool absorbing applied heat
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Experimental Setup

• K Type sensor probe thermocouples (0.1 mm diameter)

• Graphtec GL980 used to record data with high sampling rate
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Experimental Procedures
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Layup direction
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Experimental Procedures

0° experimental 

course

Layup direction
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Experimental Procedures
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Experimental Procedures

• 2 materials with different 

properties

• Voltage for Humm3 was 

changed to achieve desired 

temperatures

• Other process parameters 

remained constant

Process Parameters

Compaction Force 100 lbs

Feedrate 10 m/min

Tow Tension 3 N

Temperature Varies

HUMM3 Settings

Pulse Frequency 60 Hz

Pulse Duration 2000 ms

Voltage
Changed based on 

observations

Materials

Material A

Material B



Results – Single Course Layup

• Temperature results were plotted and categorized based on defect type

• This was used to find the lowest possible temperature at each point
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Results – Single Course Layup

• Minimum required temperatures
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Results – Surface Layup

Ninety degree entire layup

(Temp. > 50c)

Ninety degree entire layupNinety degree entire layupZero degree entire layup

Zero degree entire layup

(Temp.>50C)

Ninety degree entire layup

(Temp. < 50 c)

Pucker

Tow-Lift

Splice

Bridging/

Tow-Lift

Overlap

• Minimal defects

• Defects are due to tool 

geometry not temperature

• Defects due to concave 

geometry

• Temperature high enough 

for complete tack

• Severe bridging

• Temperature not high 

enough for tack

• Combined effects from 

geometry and temperature



Discussion

• Tool curvature creates tow tension and tensile strain

• Tensile vector in convex areas is towards substrate

• Concave areas result in tensile vector away from substrate

• This results in higher temperatures needed in concave areas
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Zero degree surface layup
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Discussion

• Guide curve projection creates 

induced steering

• Bridging/tow lift up occurred at 

the outside of the course, 

particularly on 1-6

• Defect caused from 

combination of steering and 

curvature

• Steering causes tensile strain at 

the outer edge of the curved 

tows

zero degree entire layup

Ninety-degree surface layup Courses 1-6



Conclusion

• Accurate evaluation of processing temperatures on a double curved 

tool were achieved

• Bridging/tow-lift defects occurred not due to heating deviation, but 

course shape geometry

• Concave areas with lower curvature radii need higher temperature for 

tow placement without defect occurrence

• Tensile strain in the tow while being placed on a curved path and a 

curved tool lead to insufficient adhesion

• Validated with entire ply layup with less defect occurrence and machine 

stoppages
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