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ABSTRACT 

This article will discuss the use of a comprehensive methodology to inspect and track defects of 
steered Automated Fiber Placement (AFP) tows on a cylindrical surface. The high degree of 
automation in the AFP process makes the manufacturing method an excellent platform to produce 
variable stiffness composite structures. A key method in their production is the use of tow steering 
to create desired stiffness properties. However, with tow steering, there is an increased likelihood 
for the production of defects such as wrinkles and folds. A profilometry-based inspection method 
is utilized with a hand-crafted data processing technique to create accurate measures of tow 
displacement and tow deformation. This information is then used to create a quality metric which 
can be matched with processing parameters at the time of layup. 
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1. INTRODUCTION
Automated Fiber Placement is a manufacturing process for the creation of large composite 
structures. Defect tracking in AFP production has largely been an exercise in qualitative 
observation. Particularly with respect to process parameter studies, the current state of the art does 
not incorporate any attempts at instantaneous defect measurement on a given course. To the 
authors’ knowledge there exists no concrete quantitative measurement of defect quality derived 
directly from defect production. Attempts at automated inspection systems in the past, particularly 
those involving some machine learning approach, while reasonably effective and accurate, fail to 
produce the fidelity required for fine measurements. Therefore, a system capable of capturing 
instantaneous defect measurements for inclusion in process parameter studies is highly relevant. 

In effect, the problem is three-fold. First, a data collection process capable of capturing relevant 
features in an AFP manufactured structure must be selected or developed. Relevant features are 
defined as any set of input vectors that are capable of encoding useful information about the quality 
of a layup, with certain sets of input vectors having a higher relevance than others1. Secondly, 
some method of processing the relevant feature set must be derived to extract defects. Lastly, it 

1 It is important to note that traditional imaging approaches have mixed success due to the low contrast nature of 
graphite composites. Therefore standard RGB images may not have a feature set relevant to defect identification. 



must be ensured that this method for defect identification can map the input to both defect type 
and defect characteristics. Simply being left with a region in which a defect exists is not pertinent 
to this exercise. What is required is a solution with finer detail that can precisely characterize a 
given defect.  

The following document outlines the author’s approach to this problem. A comprehensive 
approach to gathering the quality conditions of a layup will be demonstrated with respect to defect 
detection on steered tows across a cylinder. Analysis and extraction of course geometry features 
will also be demonstrated.   

1.1 Purpose 
Steering of AFP tows on ruled surfaces presents tremendous opportunities for structural 
performance and stiffness tailoring at fractions of the weights currently achieved with standard 
design paradigms [1]–[3]. Unfortunately, steering in the context of AFP will trend towards 
inducing a number of major defects, notably wrinkles and folds [4]–[7]. While defect production 
is a phenomenon that is generally known in fiber steering, exacting correlation between processing 
parameters, steering radius, surface geometry, and defect production are not well developed. 

To address these questions, a series of experiments were run at the University of South Carolina 
at the McNair Center for Aerospace Innovation. Steered paths were created across a 1219.2mm 
diameter cylinder in a design of experiment (DOE) intended to explore a complete solution space 
for processing parameters. Finding the effect of these design and manufacturing features on part 
quality requires that defects are tracked precisely and then encoded into useable knowledge to 
make statements on the layup quality and parameter relationships to layup quality. It is the author’s 
intention to show that the inspection and data processing solution contained in this document are 
suitable to answer this question. 

1.2 Literature Review 
AFP inspection is an open research topic that has been explored extensively in several previous 
works by the authors [8]–[10]. Traditional manual inspection used currently in industry is a 
considerable drain on time, with some estimates of inspection accounting for more than 30% of 
machine operation [11]–[13]. Manual inspection is also principally a qualitative exercise, with 
somewhat arbitrary judgements about layup quality being rendered without precise measurement. 
It is in many ways a “gut” determination if a given part is acceptable.  

Novel hardware approaches to the imaging or data collection of a composite part has been the 
subject of significant research. Thermography has become a leading technique for the inspection 
of composite parts. Thermographic inspection tracks the flow of heat through a part after thermal 
excitation. When defects are present, apparent material properties will differ from the reference 
background, thus affecting heat transmission through the part at the affected area [14]–[17]. 
Thermography has also been directly explored in AFP inspection, yielding some novel solutions 
to online AFP inspection [18], [19].  

Once data has been collected, it must have relevant features extracted and then processed to 
determine damaged areas automatically. This is quickly becoming the realm of machine learning 
(ML); and with this development semantic meaning can be assigned to given feature sets in data. 



This is apparent in the world of computer vision. Remarkable advances have been made following 
the introduction of the deep convolutional neural network in the AlexNet algorithm [20]. ML and 
particularly deep neural networks appear to be the future stalwarts of data analysis and processing. 
It should be noted that the strength of deep networks lies in the many layers of processing units, 
allowing for features to be automatically extracted and transformed from a raw input vector. 

1.3 Proposed Solution 
The creation of our system relies on a bedrock of several previous explorations into the area. 
Previously, an ML-based inspection method was developed for the automated identification of 
defects on an AFP manufactured structure [9]. The principle of precise defect characterization was 
first forwarded in this paper and resulted in an algorithm capable of determining both the class and 
the exact shape of a defect. Later additions to the system included a comprehensive user interface 
for creating user-defined defects and correcting defects misplaced by the automated system [8]. 
For data collection, the Ingersoll Machine Tools (IMT) Advanced Composite Structures Inspection 
System (ACSIS) [Figure 1] was utilized to scan a part and capture precise data about the height 
profile of the part. ACSIS data collection is a profilometry system utilizing 4 Keyence LJ-7080 
blue-light profilometers. 

 

Figure 1: ACSIS AFP Inspection System 

Profilometry has the capability to rapidly produce height profiles of a part, which ACSIS then 
maps to pixel values to create a grey scale image to be processed. Coupled with the nature of the 
defects relevant to the steering study, this offers a unique opportunity for analysis. ML is becoming 
the preferred tool on the principle that features can automatically be pulled from raw data. 
However, if features are readily available, then it may often be more convenient to use a hand-
crafted approach to data processing. In the case of profilometry scans, height profile is a potential 
mechanism to highlight defects.  
 
Coupling this with the UI developed for previous inspection systems, the mechanism for potential 
error in a simple hand crafted solution become apparent. Simple marking of the course boundary 



allows for recreation of the course geometry, and from it a centerline description of the course can 
be determined. 

2. CONCEPTUAL OUTLINE 
The analysis algorithm is subdivided into several parts: (1) the extraction of defects from the height 
profile, (2) determining the centerline of each course, and (3) the iteration of a measurement line 
over the length of the course to determine the percentage of course width at a given instance is 
occupied by defects. Figure 2 shows the dataflow to from inspection to quality measurement. 

 

Figure 2: Quality Measurement Algorithm 

2.1 Height to Defect 
As mentioned, the ready abundance of height data draws us towards a relatively simple method 
for defect identification. By applying simple gates to the height profiles and shading in pixels, out 
of plane deformations and tow displacement can be determined. The lower gate represents the tow 
displacement and the upper gate the out-of-plane tow deformation. The resulting pixel blobs can 
be extracted using the marching squares algorithm [21], resulting in a bounding polygon around 
each collection of pixels. From this, small polygons generated from artifacts in the image were 
filtered out, resulting in a precise bounding polygon being placed around defects of interest. In the 
case that a significant deformation may cast a shadow that could trigger a false positive for a 
displacement. This is easily accounted for with a quick adjustment through the UI. The resulting 
defects map for the courses steered using different process parameters is shown in Figure 3 where 
tow displacements are represented in green and out-of-plane deformations in orange. 

2.2 Reconstruction of Course Geometry 
Before quality measures can be gathered, the defect data must first be placed in context to the 
course that the defects are on. In order to better represent the course geometry, a centerline is 
determined such that a general “direction” to the course can be used for further evaluation. First 
the Voronoi Diagram [22] is generated with the course boundaries as seed points [Figure 4]. From 
this, a set of Voronoi edges is constructed. The set is then filtered such that only edges within the 
course boundary remain. What is left is a series of unsorted edges lying within the course. Figure 
5 gives an example of these unsorted edges. Note that while a general centerline description can 
easily be seen, there are several edge artifacts that require more processing to remove. 
 



 

Figure 3: Defects Identified on Steered Courses 



 

Figure 4: Voronoi Diagram Generated from Course Boundary 

These edge artifacts can be removed through a number of potential methods. The authors can 
speculate about a number of transformational or clustering approaches using the vertices of the 
edges could result in good results. However, if we create a graph reflecting the connectivity of 
each of the edges, then a number of fast graph theoretic approaches can be deployed. 

Principally, if the assumption is made that these edge artifacts do not bridge across the interior of 
our pseudo-centerline, then by extension the centerline approximation is the shortest path from the 
leftmost to the rightmost edge vertex. This is easily and quickly accomplished using Dijkstra’s 
Algorithm [23] and assuming that all of the edges in the graph have equal weight. Therefore, so 
long as the number of edges is low enough such that the process of mapping back and forth between 
graph space and coordinate space is computationally reasonable, then the general centerline 
[Figure 5b] can be extracted.  

If one wishes to improve this description of the centerline, then a simple smoothing procedure by 
approximating the extracted centerline by a piecewise linear function [Figure 6a] achieves a nice 
result and is an important step for preprocessing when iterating a line normal to the center for final 
defect measurement. 



 
Figure 5: a. Set of Voronoi Edges in Course Boundary. b. Extracted Centerline 

 

Figure 6: a. Piecewise Linear Function Fit to Centerline. b. Intersection Lines Normal to Course 
Center 

2.3 Measuring Layup Quality 
Thus far, the discussion of the analysis present in this document has centered on the identification 
of defects and the creation of corresponding geometry markers that enable locating the defects in 
context of the course. To link these two portions of our analysis together for the creation of a 
quality metric, a definition of the instantaneous effect of defects on the course must be created. To 
do this, the centerline extracted in the previous sections is used as a reference through which a line 
normal to the course can be created [Figure 6b]. This normal line is then iterated over the length 
of the course, where the length of that line intersecting with defects is determined. The length of 
the intersection is normalized against the width of the course at that section, resulting in the 
percentage of the course at a point that contains defects. Building this description over the course, 
and entire profile of manufacturing defect production across the entire course can be constructed. 
For each of the classes, a profile can respectively be built. In the case of the steered tow defects in 
this experiment, out of plane deformation, tow displacement, and total defects can be measured. 
However, this system is applicable to any set of defects that one might wish to identify. 

3. RESULTS 
In the case of a course generated in the steering experiments, a defect profile can be produced 
according to the methods outlined in the previous section. This defect profile [Figure 9] shows 
defect production as a function of the length of the course. One can note that as expected, the 
number of defects increases as the course moved from the linear regime to the steered section. 



 

Figure 9: Defect Production Across a Steered Course 



4. CONCLUSION & FUTURE WORKS 
The method for quality assessment outlined in this document represents a novel method for 
understanding the production of defects instantaneously across a course under steering. 
Profilometry scans provided a manner by which defects could be identified such that the precise 
boundary of the defects could be characterized through the gating of height profiles for the 
identification of tow displacement and out-of-plane deformation. A process based on principles of 
computational geometry was developed to extract the centerline of a course from inspection data 
using the Voronoi Diagram and graph theoretic relationships between Voronoi elements. Using 
this information a measurement of the amount of a course width that was occupied by defects 
could be made. An instantaneous measurement of defect production was then created. 

The quality measurements of the steered courses was done while keeping detailed process 
parameter information. Processing parameters for AFP manufacturing such as heating 
temperature, compaction pressure, and feed rate are poorly understood in the context of layup 
quality. It is the author’s intent to use this new quality assessment tool to correlate process 
parameters along with design variables such as steering radius; therefore enabling a qualitative 
statement about the rank, optimality, and effect of processing parameters on layup quality. 
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