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ABSTRACT 

Modern manufacturing platforms are defined by the quest for increased automation throughout the 

production cycle. This continuing pressure towards automation dictates that emergent technologies 

are leveraged towards this goal. Unfortunately, this increasing automation brings additional 

complexity and production issues. To address these challenges, this paper discusses the methods 

developed and deployed by our team (USC neXt) to employ (1) large-scale simulation, (2) system 

health monitoring sensors, and (3) advanced computational technologies to establish a life-like 

digital manufacturing platform and to capture, represent, predict, and control the dynamics of a 

live manufacturing cell. A machine learning based Digital Engine will be used to dynamically 

control and schedule operations in the live manufacturing cell, based on simulation results and real 

time data. Sensors, such as load cells, accelerometers, robot monitors, and thermal cameras will 

connect to digital twin systems, collecting and sharing accurate real-time plant descriptions 

between stakeholders. By creating our future factory using an Industrial Internet of Things (IIoT) 

platform, we will present data-driven science and engineering solutions to our industrial partners, 

accelerating the Smart Manufacturing Innovation. Future work will focus on applying the proposed 

methodology on more diverse manufacturing tasks and material flow, including collaborative 

assembly jobs, visual inspection, and continuous movement tasks. 
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1. INTRODUCTION 

The manufacturing sector is currently reinventing itself by embracing the opportunities offered by 

digital transformation, industrial internet, automation, and machine learning among other 

innovations. This development is commonly referred to as the Fourth Industrial Revolution 

(Industry 4.0) or Smart Manufacturing. Smart Manufacturing can be seen as the cognitive 
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counterpart of automation of physical processes, thus being understood as cognitive automation. 

While physical automation relieves human operators of unergonomic, dangerous, repetitive, and 

heavy workloads, cognitive automation attempts the same for mental tasks that are both stressful 

and repetitive or require significant processing power for large dataflows. Overall, Smart 

Manufacturing incorporates advanced data acquisition, analysis, and utilization through 

visualization. The convergence between virtual and physical manufacturing systems has been 

pursued as a goal of data-driven smart manufacturing. However, Smart Manufacturing systems are 

constrained by the methods used to connect factories to control processes in a more dynamic and 

open environment [8]. One of the most common problems with physical smart manufacturing 

systems is that direct process quality measurements are often unavailable [4]. The potential 

capability of adopting available industrial tools to develop plant predictions and smart 

manufacturing policies is expected to demonstrate the easy applicability of Smart Manufacturing 

(SM) to industry without requiring specific expertise for practitioners.  One of the more recently 

available industrial digital transformation tools, Virtual Commissioning (VC), intends to verify 

and validate manufacturing systems and associated control programs through simulation before 

the physical implementation by enabling the connection between a virtual plant model and a real 

controller [9].  

In our work, establishing connections with virtual environments is proposed to further overcome 

these outstanding bottlenecks in the evolution of SM. This research demonstrates that the 

implementation of Virtual Commissioning as one of the steps to industrial digital twinning will 

accelerate the training, testing, and validation of smart control systems. The method to pursue VC 

employs large-scale simulations, sensors, and computation technologies to establish a life-like 

digital manufacturing platform to capture, represent, and predict the dynamics of a live 

manufacturing cell. By creating an Industrial Internet-of-Things (IIoT) platform, this work 

presents data-driven science solutions to the current industrial applications while moving towards 

accelerated Smart Manufacturing Innovation. As a result of this work, the conceptual outline 

towards an AI-driven robotic manufacturing cell proposed by our preliminary proof of concept 

[18] is further enhanced by illustrating more detailed implementations and key technologies along 

with some preliminary results using our methodology. On this basis, the foundation of a dynamic 

scheduler agent, termed the Digital Engine (DE), is developed as a smart process optimization tool 

utilizing virtual platform data. The ideation of such a platform optimization tool through the DE 

concept coupled with a true Virtual Commissioning platform fits directly under the SM umbrella 

and has the potential to evolve into a number of advances in smart systems. These advances include 

higher throughput, safer human intervention, self-monitoring manufacturing cells, and more 

autonomous operation control and scheduling. 

2. LITERATURE REVIEW 

Negri et al. (2017) summarized the roles of the Digital Twin (DT), which are still mostly applied 

in product predictive maintenance and condition-based monitoring related research in the fields of 

Aeronautics and Space [11]. However, it is worth noting that the DT usage is emerging in the fields 

of manufacturing and robotics, where the emphasis on Virtual Commissioning and automation 

system optimizations are in demand. In 2013, the first works reporting research on DT in advanced 

manufacturing sector considered DT to be the virtual counterpart of production resources, and not 

only of the product [10]. An interesting application of applying real-time synchronized simulation 

of the production system as a part of a highly responsive and modular production control system 
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is proposed, named Synchro-push [2], which continuously updates inventory status and performs 

adaptive scheduling of production orders and transfer management in prompt response to the 

changes in the production mix. 

The definition of a Digital Twin has been non-uniform and ambiguous depending on the 

application areas. Scientific researchers tend to look for high-fidelity reference models to improve 

predictive capabilities of digital twins, where interactive optimizations can occur on both physical 

and virtual parts. Schleich et al. proposed a concept of utilizing Skin Model Shape [12], an abstract 

model of the physical interface between a workpiece and the environment, as a reference model to 

predict the product physical properties [13]. The transient data feed between objects requires safer 

and more efficient communication protocols to key DT technologies, such as MQTT [5] and OPC-

UA [15], which is a more practical industrial approach. In the aspect of system optimization, a 

comparison between the conventional process optimization tool of Value Stream Mapping and 

Digital Twin was made [17] and the potential near real-time data acquisition and simulation 

capabilities of DT were demonstrated. Furthermore, Virtual Commissioning is another well-

developed technology for testing systems through simulations to evaluate the safety, feasibility, 

and efficiency of scheduling and manufacturing approaches before physical deployment. An 

overview by Hoffmann et al. (2010) [6] demonstrated the implementation of VC necessitates a 

Computer-Aided Engineering (CAE) simulation tool environment and object-oriented databases 

containing simulation models of manufacturing system components, by which several recent 

attempts [1][3] were made in realizing VC with the same philosophy using different tools to 

construct virtual plant, hardware/software architecture, communication pathways, etc. 

The implementation of Digital Twin is centered around data and interfacing communications since 

mass customization and flexible production emphasize the need for an easier high-level data 

storage and model exchange between different systems connected to the DT [14]. In this work, an 

object-oriented paradigm (XML/JSON) and IoT middleware are used for an easier exchange of 

data. The following are identified as the future research trends on DT-driven design and 

manufacturing: (1) Intelligent perception and connection technology, (2) Digital twin data 

construction and management, (3) Smart service analysis method based on digital twin data, and 

(4) More applications on DT-driven Product Lifecycle Management (PLM) [16]. The data-driven 

approach to Smart Manufacturing was further outlined in three essential steps: (1) Establish 

networks to define problems, (2) Develop platforms for modelling, sharing, and innovation, (3) 

Enact smart manufacturing policies. Kritzinger et al. attempts to distinguish between recent 

applications by the level of data integration among digital and physical objects [7]. The Digital 

Model method implements bi-directional manual data flow while Digital Twin enables bi-

directional automatic data flow. Digital Shadow only feeds one-way automatic data flow from the 

physical object into the digital object, while data flow from digital object to physical object is 

manual. Based on this categorical method, most of the investigated publications are based on 

Digital Shadow and Digital Model classifications. The case studies that fit the definition of two-

way data streaming Digital Twin applications are very scarce. In such a study, three kinds of data 

are being exchanged: real-time perception data, production process data, and production activity 

plan data. These are highlighted and their linkage to resource deployment and optimization are 

depicted under an event-driven assembly line [19]. To that end, three levels of DT components 

need to be modelled: element, behavior, and rule, which can be interpreted as system components, 

predictive responses, and control policies. 
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3. BUILDING FUTURE FACTORIES 

To address these challenges, this paper discusses the methods developed and deployed by our team 

(USC neXt) to employ (1) large-scale simulation, (2) system health monitoring sensors, and (3) 

advanced computational technologies to establish a life-like digital manufacturing platform and to 

capture, represent, predict, and control the dynamics of a live manufacturing cell. A machine 

learning based Digital Engine (DE) will be used to dynamically control and schedule operations 

in the live manufacturing cell, based on simulation results and real time data. Sensors, such as load 

cells, accelerometers, optical slip detection sensors, and thermal cameras will connect to digital 

twin systems, collecting and sharing accurate real-time plant descriptions between stakeholders. 

By creating our future factory using an IIoT platform, we will present data-driven science and 

engineering solutions to our industrial partners, accelerating Smart Manufacturing Innovation. 

Future work will focus on applying the proposed methodology on more diverse manufacturing 

tasks and material flows, including collaborative assembly jobs, visual inspection, and continuous 

movement tasks. 

3.1 Large-Scale Simulations 

In this work, the Digital Twin is based on one of the key technologies of Digital Transformation, 

Virtual Commissioning (VC). Current implementations of VC still require manual construction of 

the virtual system and definition and tuning of system components. However, the development of 

industrial software solutions to VC has greatly improved the accuracy and user-friendliness of 

offline programming of robotic systems and verifying control logic over the traditional 

commissioning process. The VC solution used to build the virtual cell for this work was Siemens 

Tecnomatix Process Simulate. Process Simulate provides advanced simulative functions such as 

importing CAD models, kinematics definition and simulation, collision detection, and Teach-Type 

Robot Programming. A functioning virtual robotic cell can be designed, from which possible robot 

configurations can be defined, simulated, and translated to robot programming languages, given 

proper robot dimensions and critical frames such as the Tool Center Point (TCP). This is normally 

referred to as offline programming. A functional virtual cell depends on accurate definitions of 

system components. While CAD models and definitions of well-developed products can be 

retrieved from manufacturers, some components require manual definition before being imported 

to Process Simulate. For example, the kinematics of an in-house manufactured robot gripper from 

our stage 1 platform had to be defined (see Figure 1). In defining the kinematics of this device, 

first a CAD model was created in another software and exported with all the components in an 

assembly folder; second, the kinematics of the gripper base, gear rod, connecting rod and gripper 

finger were grouped as a crank, which consists of a fixed link, input link, output link and coupler 

link; third, the defined components were linked and their relative translations were specified; 

finally, the kinematic definitions were tested by jogging the joints. The gripper positions and join 

values were configured for the OPEN, CLOSE, SEMIOPEN poses for simulation uses. 
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Figure 1: Gripper kinematics definition in Process Simulate: (a) Create CAD model; (b) Define component kinematics; (c) Link 

components; (d) Jog joints and verify kinematic definitions 

Beyond object kinematics definitions, a successful virtual cell construction requires accurate 

definitions for object locations, mounting or attachment information about gripper or any other 

end effector mounted on robot end, object collision detection to verify there are no dynamic 

intrusions between objects, robot reachability checking to see if the path locations are within the 

possible configured reach, etc. Process Simulate provides a simple user interface, allowing the user 

to simulate object dimensions to avoid collisions, plan potential physical cell setups, and smart 

locate objects (Figure 2). Benefiting from Process Simulate capabilities, our stage 1 platform setup 

was constructed with high fidelity to the physical cell (Figure 3) ensuring all the robot paths are 

valid and safe within reachable and collision-free regions. 

 

Figure 2: Proposed virtual cell capabilities. Left: predict object collisions; Middle: test path location reachability. Right: Smart 

locate objects 
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Figure 3: Stage 1 Platform. Left: virtual cell in Process Simulate. Right: physical setup. 

To ensure the feasibility of the proposed system, the path accuracy of Process Simulate offline 

programming (OLP) was investigated. Virtually commissioned paths were tested on Stage 1 

platform physical setup (Figure 3 right), which includes a human collaborative robotic 

manipulator, Yaskawa Motoman HC-10, the YRC1000 OEM robot controller, and a SIMATIC 

S7-1516F Siemens Programmable Logic Controller (PLC). The robot program generated by 

Process Simulate OLP was directly transferred to YRC1000 using a Siemens CP1616 Profinet 

adapter card and successfully interpreted by the HC10 with the proprietary Yaskawa programming 

language, INFORM III. Stage 1 platform experiments were performed in the following procedures: 

(1) virtual path planning in Process Simulate, (2) generation of the INFORM III code within 

Process Simulate platform, (3) physical experimentations with generated robotic code. Three 

different robot tasks were virtually commissioned and then physically tested: pick and place, water 

pouring, capping and assembly. These tasks were accomplished with high precision with defined 

kinematics, path locations, and robot configurations. Moreover, under the option of 1:1 real-time 

simulation speed, the simulation and real robot programs were executed near synchronously. 

Therefore, it is concluded that Process Simulate is a relatively powerful tool for the virtual 

commissioning of robot motions and paths. Given the simulation accuracy, robot manufacturing 

virtual cell proposed in this work is based in Process Simulate virtual environment shown in Figure 

3. Additionally, the system communication pathways depicted in Figure 4 were used to facilitate 

the required communication between system components. 

 

This completes the system data flow proposed by our previous work and implies that the 

simulation-based digital twin of production systems can be used as an augmented tool to 

commission robotic manufacturing cells with significantly reduced safety and cost concerns by 

constructing virtual cell environment and enabling the communication pathways between system 

components. 
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Figure 4: Control loops of physical and virtual robot platform. Left: Robot signals hardware control loop. Right: Virtual Cell 

Control Loops by Hardware-in-the-loop (PLC as controller) and Software-in-the-loop (PLCSIM as controller). 

3.2 System Health Monitoring 

The convergence between cyber and physical manufacturing systems has been pursued as a goal 

of data driven smart manufacturing (SM). However, SM systems are constrained by the gap 

between connecting factories and control processes in a more dynamic and open environment. 

Moreover, previous research on data-driven manufacturing intelligence mainly focuses on data 

collected from the physical model instead of the virtual model. The most common problem with 

physical manufacturing systems is that direct process quality measurements are often unavailable. 

Therefore, establishing connections with virtual environments is proposed to further overcome 

these outstanding bottlenecks in the evolution of SM. This research demonstrates that the 

implementation of Virtual Commissioning (VC), as one of the steps to industrial digital-twinning, 

will accelerate the training, testing, and validation of smart control systems. 

This section describes the design an application for health monitoring of an assembly line. A senior 

engineer/manager or a maintenance engineer using the developed application will be able to access 

health data of any assembly line through their personal device. Their device will display the health 

of system components and the statistics of sensors embedded within the line. The goal of such an 

application is to have a better real-time representation of the system’s health and to be able to act 

proactively. Augmented Reality (AR), a data visualization tool, can be used in manufacturing 

industries where real time reports are essential for the decision-making process. AR technology 

displays Key Performance Indicators (KPI) of each workstation inside an assembly line, gathered 

from measuring devices; this information is transmitted to a mobile device wirelessly. The 

implementation of such a system would result in a dynamic tool that allows users to reduce audit 

times. 

3.2.1 Sensors for condition monitoring 

This section defines the data acquisition and processing systems that will be used to monitor and 

assess the condition of a robotic assembly line by extracting data from sensors installed on the 

robot gripper and pair this data with a live stream video feed of the robotic cell for the overall 

purpose of health monitoring. This implementation can be divided into four main clusters: 
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1. Sensor positioning and installation: the first cluster is data acquisition through the sensors 

on the gripper. These five sensors will relay vital information from the robot that will be 

used to assess the overall health of the robotics functions. Figure 5 shows the gripper, where 

all sensors’ location is depicted. The temperature sensor is attached directly on the motor, 

the potentiometer is attached to the motor shaft, the load sensor is attached on the inner 

side of one of the fingers, the optical slip detection sensor is attached on the inner side of 

the other finger, and the accelerometer is attached to the upper section of one of the arms. 

 

Figure 5: Sensors used to monitor the robotic gripper 

2. Collecting data through a single-board computer: data will be acquired through a small, 

industrial single-board computer. Data will be acquired in real time with minimal latency. 

3. Integration: data will be transferred to a server in order to be displayed. This cluster will 

receive, process, and ultimately distribute the information.  

4. Display: this cluster provides the information in an organized manner while making sure 

all vital information is readily available for the user, whether he/she is a senior manager or 

a maintenance engineer. This final cluster is the display modulus that will be used to 

showcase the processed information gathered from the server. 

Each cluster in the architecture will integrate with the cluster after to ensure all data is being 

acquired, transferred, and displayed successfully. 

Figure 6 summarizes the connections between major components of the system. Yellow lines 

represent wired connections between the sensors and the single-board computer. The number of 

wires depends on the sensor type. The purple connection between the ethernet port on the single-

board computer (SBC) and the main computer represents a wireless connection between the SBC 

Figure 6: Data management 
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and the server accessed from the main computer. From the main computer, all incoming data is 

processed and sent to a website, where the resulting information can be accessed from any device.  

3.2.2 Monitoring of robotic health deterioration 

Robot precision deterioration detection, monitoring, and evaluation are crucial activities in 

numerous manufacturing applications, particularly when it comes to the high precision processes 

that may include assembly, welding, material removal, drilling, and riveting. The deterioration of 

robot precision can increase the probability of unpredicted stoppages and influence manufacturing 

quality and production efficiency. 

3.3 Accelerated Computing 

One of the principles in robust automation involves the rapid evaluation of the state of the 

manufacturing platform and the interjection of new actions into said platform. In more precise 

words, future factories will thrive on speed. The importance of this axiom is twofold: (1) the faster 

data is processed and utilized, the faster the production cycle, and (2) fast actions in physical 

systems correspond to a safer environment. In service of this principle, each area of the Future 

Factories platform will be augmented with advanced computing hardware.  

Hardware devices capable of significant performance increases above traditional CPU-bound 

platforms have recently begun to gain popularity in the consumer and industrial markets. In 

particular, the culmination of breakthrough technologies in the Graphical Processing Unit (GPU), 

Application Specific Integrated Circuit (ASIC), and Field Programmable Gate Array (FPGA) 

spaces makes each device attractive as solutions for the acceleration of applications. GPUs are 

hardware devices consisting of many general-purpose processing units that operate in parallel. 

While not possessing a lower latency for individual computations than a CPU core, the many 

parallel arrangements of each processing unit creates a computing paradigm that dramatically 

increases the run time of certain operations such as matrix multiply and search. While parallel 

architecture of the GPU offers a counterbalance to the tradeoff between flexibility and speed in 

general purpose processors, individual computations and logic operations are still somewhat slow 

compared to dedicated hardware. ASICs and FPGAs remove the general computing paradigm in 

order to further increase speed, embedding algorithms and computations on physical hardware. 

The speed increases come with the price of an explicit and limited instruction set. FPGAs, in 

response to this, are composed of a series of reconfigurable logic blocks, allowing for the hardware 

to be reprogrammed for new operations. However, because FPGAs are not custom devices such 

as ASICs, they have a set footprint, and thus a set amount of hardware components, limiting the 

size of the operation they can efficiently perform.  

In the context of the neXt manufacturing cell, FPGA and GPU-based acceleration is being used to 

dramatically increase the performance of the Digital Engine. Both FPGAs and GPUs have 

demonstrated significant speedups in the operation of neural networks. In the DE application, a 

GPU training loop interfaces with the software side of the DE, continuously updating network 

weights. GPU performance in floating point operations such as gradient calculations makes it ideal 

for this application. For the operation of the DE in the physical system, the network generated in 

the training loop is pushed to an FPGA and operated in a direct loop with the platform. The 

extremely fast bitwise operations, addition, and multiplication can be accomplished in fixed point 

on hardware, limiting hardware and RAM usage. Instancing a neural network consisting of a few 
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thousand weights becomes the perfect application for this hardware configuration. Additional 

applications include having a high frequency data processor close to the source of sensor data. In 

the case of many digital sensor devices, the sample rate is far too high for most traditional platforms 

to process, requiring significant down-sampling. However, dedicated hardware devices, such as 

ASICs, have both the signal processing capabilities to perform the necessary computations while 

having a dedicated clock frequency that can keep up with extremely high sample rates. FPGAs 

have also been demonstrated to be a useful tool in the acceleration of solvers for ordinary and 

partial differential equations, though the area still has much room to be explored. With this in 

mind, a novel solution to dynamic path planning involving rapid inverse kinematics calculations 

accelerated on FPGA are currently being developed.   

4. CONCLUSIONS 

Filling the gaps between virtual and physical systems will open new doors on Smart 

Manufacturing. The scope of a smart automated manufacturing system is also limited due to the 

inability of manufacturing process measurements. Integrating Machine Learning algorithms into 

automated manufacturing control problems with a facile optimization environment will be a novel 

combination between data science and industrial manufacturing. The power of data analytics 

algorithms is greatly augmented by interfacing with industrial software for simulation and 

automation. This paper presented our efforts to incept a Digital Engine that supports the scheduling 

of a virtual commissioning platform. The DE and its subsequent application technologies represent 

a shift in how manufacturing is evaluated and completed (Figure 7). 

 

Figure 7: The pillars of Future Factories 
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