
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Publications Artificial Intelligence Institute 

4-19-2021 

Cognitive Digital Twins for Smart Manufacturing Cognitive Digital Twins for Smart Manufacturing 

Muhammad Intizar Ali 
Dublin City University, ali.intizar@dcu.ie 

Pankesh Patel 
University of South Carolina - Columbia, ppankesh@mailbox.sc.edu 

John G. Breslin 
NUI Galway, john.breslin@nuigalway.ie 

Ramy Harik 
University of South Carolina - Columbia, HARIK@mailbox.sc.edu 

Amit Sheth 
University of South Carolina - Columbia, amit@sc.edu 

Follow this and additional works at: https://scholarcommons.sc.edu/aii_fac_pub 

 Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, Other 

Computer Engineering Commons, Other Electrical and Computer Engineering Commons, and the Robotics 

Commons 

Publication Info Publication Info 
Preprint version IEEE Intelligent Systems, 2021. 
© IEEE Intelligent Systems 2021, IEEE 

This Article is brought to you by the Artificial Intelligence Institute at Scholar Commons. It has been accepted for 
inclusion in Publications by an authorized administrator of Scholar Commons. For more information, please 
contact dillarda@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/aii_fac_pub
https://scholarcommons.sc.edu/aii
https://scholarcommons.sc.edu/aii_fac_pub?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


IEE
E P

ro
of

1 EDITOR: Amit Sheth, University of South Carolina, Columbia, SC, 29208, USA

2 DEPARTMENT: INTERNET OF THINGS

3 Cognitive Digital Twins for Smart
4 Manufacturing
5

6 Muhammad Intizar Ali, Dublin City University Glasnevin, Dublin 9, Ireland

7 Pankesh Patel, University of South Carolina, Columbia, SC, 29208, USA

8 John G. Breslin , NUI Galway, Galway, Ireland
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10 Smart manufacturing or Industry 4.0, a trend
11 initiated a decade ago, aims to revolutionize
12 traditional manufacturing using technology-
13 driven approaches. Modern digital technologies such
14 as the Industrial Internet of Things (IIoT), Big Data ana-
15 lytics, augmented/virtual reality, and artificial intelli-
16 gence (AI) are the key enablers of new smart
17 manufacturing approaches.

18 The digital twin is an emerging concept whereby a
19 digital replica can be built of any physical object. Digi-
20 tal twins are becoming mainstream; many organiza-
21 tions have started to rely on digital twins to monitor,
22 analyze, and simulate physical assets and processes.1

23 The current use of digital twins for smart manufactur-
24 ing is largely limited to i) status monitoring, ii) simula-
25 tion, and iii) visualization. For status monitoring,
26 digital replicas of physical assets (e.g., machines) are
27 created, machines are continuously monitored using
28 IIoTs, and the latest status of a machine can be
29 assessed by querying its digital twin. For simulation,
30 digital twins of machines, processes, and products are
31 created to mimic real settings. Simulation allows the
32 design, development, and testing of new products and
33 processes using their digital twins before applying
34 them to actual physical assets, this is presented in.5

35 For visualization, digital twins can include real-time
36 dashboards and alert systems to monitor and debug
37 an operational environment.2 However, in contempo-
38 rary cases, digital twins are simply considered to be an
39 exact replica of the physical assets, without any value-
40 added services built on top of them which could

41convert physical assets into autonomous intelligent
42agents. A major advantage of this enhanced design of
43digital twins is that they can offer much more than
44just an exact replica to support value-added services
45on top of digital twins, which are not possible on the
46physical assets.

47COGNITIVE DIGITAL TWINS
48Cognitive digital twins are an extension of existing
49digital twins with additional capabilities of commu-
50nication, analytics, and intelligence in three layers:
51i) access, ii) analytics, and iii) cognition.
52The access layer is responsible for communication
53with the machine and gets access to data regarding
54the status of a physical asset to update the status of
55the digital twin. The analytics layer provides edge ana-
56lytics capabilities at the device level. Similar to the
57edge analytics at the edge, this layer of the digital twin
58can perform additional analytical tasks on top of real-
59time collected data to help with the process of deci-
60sion making by converting the raw sensory input into
61actionable knowledge.3 The cognitive layer enables
62cognition by the digital twins. It is capable of perform-
63ing complex decision making using edge analytics,
64domain expertise, and global knowledge bases. It is
65also responsible for communication among digital
66twins, allowing them to build their own networks and
67perform autonomous decision making. Cognitive digi-
68tal twins will convert traditional digital twins into
69smart and intelligent agents that can access, analyze,
70understand, and react to their current status. In case
71of anomalies, rather than resorting to a simple alert
72system, the cognitive digital twin can interact with the
73operational environment and digital twins of products,
74running processes to further analyze and intelligently
75understand the anomalies. The cognitive digital twin
76can draw conclusions of situations locally and then
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77 also interact with other digital twins of physical assets
78 operating in similar operational conditions to better
79 understand shared local anomalies. Once identified,
80 cognitive digital twins can interact socially with other
81 peers and share knowledge and generate alerts in
82 advance of any future potential unexpected situa-
83 tions. Insights from the analytics performed by cogni-
84 tive digital twins will eventually help to build
85 enterprise-level knowledge graph extraction, capture,
86 and storage of domain knowledge.
87 Cognitive digital twins will disrupt existing tech-
88 nologies and applications used for digital twins by
89 making them intelligent as well as social. The
90 emerging concept of self-healing, self-configuring,
91 and self-orchestrating systems is made possible
92 using this approach. The team at the Confirm SFI
93 Research Centre for Smart Manufacturing has
94 implemented an initial prototype of cognitive digital
95 twins using a benchmark dataset for production
96 line performance monitoring6 and intend to fully
97 test the implemented prototype on the actual pro-
98 duction lines of a smart factory in collaboration
99 with an industry partner. An initial factory of the

100 future to assess and implement this emerging con-
101 cept is also being constructed at the University of

102South Carolina (Figure 1, see Xia et al.7 for details).
103Having a social and interactive network of digital
104twins and a shared knowledge space will allow ana-
105lytics and intelligence to go beyond the physical
106walls of a factory where digital twins can share
107their experience and lessons learned across
108the board.

109ECOSYSTEM OF COGNITIVE
110DIGITAL TWINS
111We envision that once the cognitive digital twins are in
112place, they can build a network among themselves,
113having fully automated machine-to-machine interac-
114tion and decision making resulting in an ecosystem of
115cognitive digital twins. The knowledge gained by edge
116analytics, communication among digital twins, and
117domain knowledge including user experiences will be
118captured as a unified knowledge graph. This knowl-
119edge graph will gradually evolve and will become a
120major source of information within the ecosystem of
121cognitive digital twins. Figure 2 presents a generic
122overview of cognitive digital twins ecosystems. We fur-
123ther elaborate our vision with an example use case of
124a manufacturing plant producing orthopedic implants,

FIGURE 1. Proposed CPS-enabled control for future factories: control network administers physical cell and digital twin to syn-

chronize process signals and intelligently actuate field devices by system smart layers. System smart layers consist of business

intelligence from cloud services and semantic integration of visual signals from the edge ends.
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125 e.g., knee, hip, and elbow joint replacements. On the
126 shop floor, various machines are placed in an assem-
127 bly line performing different operations, e.g., cutting,
128 grinding, and polishing, etc. Each machine is equipped
129 with different sensors to monitor its functional state,
130 e.g., temperature, voltage, vibration, and rotation. A
131 cognitive digital twin is created for all machines, prod-
132 ucts, and processes. Collaboration and communica-
133 tion among the digital twins during decision making is
134 conducted in four stages as follows.
135 At the first stage, the cognitive digital twin of an
136 industrial machine (e.g., a grinding machine) equipped
137 with edge analytics is continuously monitoring values
138 against predefined thresholds. An alert is created
139 whenever a threshold is breached (e.g., the tempera-
140 ture of a motor inside the grinding machine goes
141 beyond an acceptable threshold).4 At the second
142 stage, the cognitive digital twin starts the sensemak-
143 ing process by collecting contextual information
144 including product characteristics (e.g., to check the
145 rigidity of a metal alloy being used for a product), con-
146 figurations of the processes being applied by the
147 machine (e.g., pressure and speed of a grinding pro-
148 cess), and operational conditions on the factory shop
149 floor such as temperature, humidity, etc. The cognitive
150 digital twins are capable of correlating all acquired
151 information and initiating a sensemaking process to
152 understand whether the current spike in temperature
153 is due to a fault in the machine, characteristics of the

154product being manufactured, the manufacturing pro-
155cess being applied, or conditions on the shop floor. A
156factory level knowledge base is gradually created for
157all previous anomalies detected and their remedial
158actions. If a preexisting similar cause is identified, and
159its remedial action is available in the knowledge base,
160the cognitive digital twin will adjust its configuration,
161request a process adjustment, and/or adjust opera-
162tional conditions accordingly. In the third stage, if a
163cognitive digital twin is unable to make sense of local
164information, it seeks further assistance from the social
165network of its peers and requests information from
166similar machines with similar operational conditions,
167e.g., a grinding machine of the same make and brand
168being used in a different plant. If an anomaly in tem-
169perature is only being observed locally, the digital twin
170of the machine adjusts itself to the configuration of
171machines running optimally without any issues. If the
172anomaly is observed across the board, a network-wide
173alert is broadcasted to request remedial actions. In
174the fourth stage, a record of captured events, interac-
175tions, the outcome of analytics, and the sensemaking
176process together with domain expertise is stored in a
177shared knowledge base in the shape of an enterprise-
178level knowledge graph. This knowledge graph will act
179as a central information portal for any future occur-
180rences of similar events. We see that in the future, this
181knowledge graph will act as a central hub for all opera-
182tional machines to post questions and get immediate

FIGURE 2. Cognitive ecosystem of digital twins.
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183 answers. When necessary, a human expert may also
184 be consulted.

185 RESEARCH CHALLENGES
186 To realize the vision of cognitive digital twins, we envi-
187 sion a design and implementation of a distributed
188 cross-domain autonomous system for smart
189 manufacturing. The goal of this system is to enhance
190 autonomous manufacturing by empowering man-
191 ufacturing resources to think, learn, and understand
192 the dynamics of industrial environments by effectively
193 integrating human cognition through AI and Semantic
194 Web technologies into the design of autonomous
195 manufacturing, respecting the Industry 4.0 system
196 design principles. The approach can be cross-disciplin-
197 ary, involving AI, semantic-empowered techniques, as
198 well as semantic data integration in autonomous
199 manufacturing scenarios. To achieve the above-men-
200 tioned vision, the following intertwined Research
201 Questions (RQs) need to be addressed:
202

203 RQ1: HOW TO CREATE AN
204 AUTONOMOUS DISTRIBUTED SYSTEM
205 CONJOINING THE BOTTOM-LEVEL
206 MANUFACTURING RESOURCES TO
207 ENHANCE RESPONSIVENESS AND
208 INTELLIGENCE? THIS RESEARCH
209 QUESTION IS FURTHER DIVIDED INTO
210 THE FOLLOWING RESEARCH AREAS:

211 › A Collaborative Network of Intelligent Agents:
212 This research investigates the design of an
213 autonomous system that can discover and
214 detect faults and disturbances autonomously as
215 well as collaboratively. In addition to this, it can
216 attempt to go beyond the existing knowledge of
217 known problems to mitigate new problems and
218 anomalies, thus capable of operating in
219 unknown environments. Furthermore, they can
220 build a collaborative network of intelligent
221 agents locally to improve the responsiveness of
222 the system.
223 › Automated Analytics for Resource-constrained
224 Manufacturing Resources8: This research
225 requires the investigation of the suitability of
226 existing interoperability standards (e.g., Web
227 of Things, RAMI 4.0, Semantic Web) and the
228 suitability of existing architecture patterns

229(e.g., fog, Intelligent edge,3 and smart agent)
230for resource-constrained manufacturing reso-
231urces as it demands quick response and auto-
232matic analytics with enhanced intelligent
233capabilities.
234› Autonomous Models on top of Knowledge
235Graph:This research requires investigation of
236incorporating several autonomous models on
237top of semantic-empowered technologies as
238we do not want to limit our vision of cognitive
239digital twins only for a specific autonomous
240model. For instance, an integration of self-
241comparison models, where a single machine
242can be compared with a fleet of similar
243machines. This capability can be extended fur-
244ther by leveraging historical information to
245predict its suitability for autonomous resource
246allocation.

247RQ2: HOW TO ENABLE AN
248AUTONOMOUS CROSS-DOMAIN
249REASONING OVER DISTRIBUTED
250INDUSTRY 4.0 APPLICATIONS?

251Industry 4.0 applications are currently designed
252while keeping a single application domain in view.
253Most of these applications target a domain-specific
254problem. Cross-domain collaborations allow to
255deduce additional events from a silo and can be
256turned into useful actuation, e.g., before allocating
257manufacturing resources, a system considers external
258electricity rates and supply chain data (e.g., weather
259and traffic conditions) in order to achieve the goal of
260reducing the factory’s energy consumption and car-
261bon footprint.
262To address this research question, we need to
263investigate an autonomous cross-domain system,
264which can leverage semantic reasoning to derive
265new knowledge and AI techniques to monitor and
266process events from totally independent applica-
267tions. It can integrate the techniques of knowledge
268discovery and inference that is not possible from
269data generated by a single application. Moreover, it
270can use algorithms for autonomous decision-mak-
271ing with uncertain, dynamic, and incomplete
272information. Having a framework among industrial
273machines and shared collaborative intelligence
274identified in RQ1 can prepare the necessary ground
275to achieve RQ2, synthesizing analytics and

4 IEEE Intelligent Systems 2021

INTERNET OF THINGS



IEE
E P

ro
of

276 intelligence of factories with other external knowl-
277 edge and services for decision making.
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